E-Book, Englisch, 312 Seiten, E-Book
Berger / Wong Applied Optimal Designs
1. Auflage 2005
ISBN: 978-0-470-85699-4
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 312 Seiten, E-Book
ISBN: 978-0-470-85699-4
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
There is an increasing need to rein in the cost of scientific studywithout sacrificing accuracy in statistical inference. Optimaldesign is the judicious allocation of resources to achieve theobjectives of studies using minimal cost via careful statisticalplanning. Researchers and practitioners in various fields ofapplied science are now beginning to recognize the advantages andpotential of optimal experimental design. Applied OptimalDesigns is the first book to catalogue the application ofoptimal design to real problems, documenting its widespread useacross disciplines as diverse as drug development, education andground water modelling.
Includes contributions covering:
* Bayesian design for measuring cerebral blood-flow
* Optimal designs for biological models
* Computer adaptive testing
* Ground water modelling
* Epidemiological studies and pharmacological models
Applied Optimal Designs bridges the gap between theoryand practice, drawing together a selection of incisive articlesfrom reputed collaborators. Broad in scope and inter-disciplinaryin appeal, this book highlights the variety of opportunitiesavailable through the use of optimal design. The wide range ofapplications presented here should appeal to statisticians workingwith optimal designs, and to practitioners new to the theory andconcepts involved.
Autoren/Hrsg.
Weitere Infos & Material
List of Contributors.
Editors' Foreword.
1 Optimal Design in Educational Testing (StevenBuyske).
1.1 Introduction.
1.2 Test Design .
1.3 Sampling Design.
1.4 Future Directions.
2 Optimal On-line Calibration of Testlets (Douglas H.Jones and Mikhail S. Nediak).
2.1 Introduction.
2.2 Background.
2.3 Solution for Optimal Designs.
2.4 Simulation Results.
2.5 Discussion.
3 On the Empirical Relevance of Optimal Designs for theMeasurement of Preferences (Heiko Großmann, Heinz Holling,Michaela Brocke, Ulrike Graßhoff and Rainer Schwabe).
3.1 Introduction.
3.2 Conjoint Analysis.
3.3 Paired Comparison Models in Conjoint Analysis.
3.4 Design Issues.
3.5 Experiments.
3.6 Discussion.
4 Designing Optimal Two-stage Epidemiological Studies(Marie Reilly and Agus Salim).
4.1 Introduction.
4.2 Illustrative Examples.
4.3 Meanscore.
4.4 Optimal Design and Meanscore.
4.5 Deriving Optimal Designs in Practice.
4.6 Summary.
4.7 Appendix 1 Brief Description of Software Used.
4.8 Appendix 2 The Optimal Sampling Package.
4.9 Appendix 3 Using the Optimal Package in R.
4.10 Appendix 4 Using the Optimal Package in S-Plus.
4.11 Appendix 5 Using the Optimal Package in STATA.
5 Response-Driven Designs in Drug Development (Valerii V.Fedorov and Sergei L. Leonov).
5.1 Introduction.
5.2 Motivating Example: Quantal Models for Dose Response.
5.3 Continuous Models.
5.4 Variance Depending on Unknown Parameters and Multi-responseModels.
5.5 Optimal Designs with Cost Constraints
5.6 Adaptive Designs
5.7 Discussion
6 Design of Experiments for Microbiological Models(Holger Dette, Viatcheslav B. Melas and Nikolay Strigul).
6.1 Introduction.
6.2 Experimental Design for Nonlinear Models.
6.3 Applications of Optimal Experimental Design inMicrobiology.
6.4 Bayesian Methods for Regression Models.
6.5 Conclusions.
7 Selected Issues in the Design of Studies of InterraterAgreement (Allan Donner and Mekibib Altaye).
7.1 Introduction.
7.2 The Choice between a Continuous or Dichotomous Variable.
7.3 The Choice between a Polychotomous or Dichotomous OutcomeVariable.
7.4 Incorporation of Cost Considerations.
7.5 Final Comments.
8 Restricted Optimal Design in the Measurement of CerebralBlood Flow Using the Kety-Schmidt Technique (J.N.S.Matthews and P.W. James).
8.1 Introduction.
8.2 The Kety-Schmidt Method.
8.3 The Statistical Model and Optimality Criteria.
8.4 Locally Optimal Designs.
8.5 Bayesian Designs and Prior Distributions.
8.6 Optimal Bayesian Designs.
8.7 Practical Designs.
8.8 Concluding Remarks.
9 Optimal Experimental Design for Parameter Estimation andContaminant Plume Characterization in Groundwater Modelling(James McPhee and William W-G. Yeh).
9.1 Introduction.
9.2 Groundwater Flow and Mass Transport in Porous Media:Modelling Issues.
9.3 Problem Formulation.
9.4 Solution Algorithms.
9.5 Case Studies.
9.6 Summary and Conclusions.
10 The Optimal Design of Blocked Experiments in Industry(Peter Goos, Lieven Tack and Martina Vandebroek).
10.1 Introduction.
10.2 The Pastry Dough Mixing Experiment.
10.3 The Problem.
10.4 Fixed Block Effects Model.
10.5 Random Block Effects Model.
10.6 The Pastry Dough Mixing Experiment Revisited.
10.7 Time Trends and Cost Considerations.
10.8 Optimal Run Orders for Blocked Experiments.
10.9 A Time Trend in the Pastry Dough Mixing Experiment.
10.10 Summary.
Index.