Berezin | Structure and Function of the Neural Cell Adhesion Molecule NCAM | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 663, 434 Seiten

Reihe: Advances in Experimental Medicine and Biology

Berezin Structure and Function of the Neural Cell Adhesion Molecule NCAM


1. Auflage 2009
ISBN: 978-1-4419-1170-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 663, 434 Seiten

Reihe: Advances in Experimental Medicine and Biology

ISBN: 978-1-4419-1170-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book describes recent developments concerning structural, functional and possible therapeutic aspects of one particular CAM, the neural cell adhesion molecule (NCAM).

Berezin Structure and Function of the Neural Cell Adhesion Molecule NCAM jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Berezin_Frontmatter.pdf;1
1.1;Preface;5
1.1.1;Contributors;10
2;Berezin_Part-I.pdf;16
3;Berezin_Ch01.pdf;17
3.1;Structural Biology of NCAM;17
3.1.1;Introduction;17
3.1.2;NCAM Belongs to the Immunoglobulin Superfamily of CAMs;18
3.1.3;Architecture of NCAM;18
3.1.4;The Topology of Ig- and Fn3-homology Modules;19
3.1.5;Three-Dimensional Structure of NCAM Ig Modules;21
3.1.6;Three-Dimensional Structures of NCAM Fn3 Modules;24
3.1.7;Models of NCAM-Mediated Homophilic Binding;25
3.1.8;Surface Force Apparatus (SFA) and Atom Force Microscopy Experiments;29
3.1.9;Model of the Extracellular Part of NCAM;30
3.1.10;Perspectives;31
3.1.11;References;33
4;Berezin_Ch02.pdf;37
4.1;Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM;37
4.1.1;Introduction;38
4.1.1.1;NCAM Isoforms;38
4.1.1.2;NCAM Glycosylation;39
4.1.2;Extracellular Interactions between NCAM and other CAMs;40
4.1.2.1;Interactions between NCAM and the Prion Protein;40
4.1.2.2;Interactions between NCAM and TAG-1;42
4.1.2.3;Interactions between NCAM and L1;44
4.1.3;Interactions between NCAM and Extracellular Matrix Proteins;45
4.1.3.1;Structural Basis for Interactions between NCAM and Heparan Sulfate Proteoglycans;45
4.1.3.2;Biological Significance of Interactions between NCAM and Heparan Sulfate Proteoglycans;47
4.1.3.3;Modulation of Homophilic NCAM Interactions by Heparan Sulfate Proteoglycans;47
4.1.3.4;The Heparan Sulfate Proteoglycans Agrin and Collagen XVIII are NCAM Ligands;48
4.1.3.5;Structural Basis for NCAM Interactions with Chondroitin Sulfate Proteoglycans;50
4.1.3.6;The Chondroitin Sulfate Proteoglycans Neurocan and Phosphacan are Heterophilic NCAM Ligands;50
4.1.3.7;Biological Significance of NCAM Interactions with Chondroitin Sulfate Proteoglycans;52
4.1.3.8;NCAM Interactions with Collagen;53
4.1.3.9;NCAM and Laminin;54
4.1.4;Extracellular Interactions between NCAM and Viruses;54
4.1.5;Concluding Remarks;55
4.1.6;References;57
5;Berezin_Ch03.pdf;68
5.1;Intracelluar Ligands of NCAM;68
5.1.1;Introduction;68
5.1.2;Spectrin, the First Identified Intracellular NCAM-Associated Protein;69
5.1.3;Spectrin’s Function in Recruiting PKCb;70
5.1.4;Spectrin’s Function in Recruiting NMDA Receptor and CaMKIIa;70
5.1.5;NCAM Interacts with the Tyrosine-Kinase Fyn;71
5.1.6;NCAM Binds Not Only Spectrin, But Also Several Other Major Cytoskeletal Proteins;71
5.1.7;Interaction with Signaling Molecules;73
5.1.8;Direct Binding of LANP and PLCg to NCAM;75
5.1.9;MyoNAP, a Novel NCAM-Binding Molecule in Avians;76
5.1.10;Conclusion;76
5.1.11;References;77
6;Berezin_Ch04.pdf;80
6.1;NCAM and the FGF-Receptor;80
6.1.1;Structural Biology of NCAM;80
6.1.2;NCAM Functions;81
6.1.3;Mechanism of the NCAM Homophilic Binding;81
6.1.4;Interaction of NCAM with the FGF-Receptor;83
6.1.5;Mechanism of the FGF-Receptor Activation by NCAM;85
6.1.6;Conclusion;87
6.1.7;References;87
7;Berezin_Ch05.pdf;93
7.1;The Role of ATP in the Regulation of NCAM Function;93
7.1.1;Introduction;93
7.1.2;ATP as a Signaling Molecule in the Nervous System;94
7.1.3;NCAM ecto-ATPase Activity;95
7.1.4;NCAM–FGFR Interaction and ATP;96
7.1.5;ATP and NCAM Ectodomain Shedding;96
7.1.6;ATP and NCAM-Mediated Neurite Outgrowth;98
7.1.7;References;100
8;Berezin_Part-II.pdf;104
9;Berezin_Ch06.pdf;105
9.1;Polysialylation of NCAM;105
9.1.1;Introduction;105
9.1.2;Developmental Regulation of NCAM Polysialylation;106
9.1.3;Re-expression of Polysia in Tumors;107
9.1.4;PolySia Biosynthesis;108
9.1.5;Phenotype of Polysia-deficient Mice;112
9.1.6;Future Directions;113
9.1.7;References;114
10;Berezin_Ch07.pdf;120
10.1;Structural Basis for the Polysialylation of the Neural Cell Adhesion Molecule;120
10.1.1;Introduction;120
10.1.2;Polysialic Acid: An Important Regulator of NCAM-dependent and NCAM-independent Adhesion;120
10.1.3;Polysialylation of NCAM: A Protein Specific Modification;122
10.1.4;NCAM Domains Required for Polysialylation;123
10.1.5;The Unique b Sandwich Structure of NCAM FN1: The Role of an Acidic Surface Patch and Novel a-Helix in NCAM Polysialylatio;124
10.1.6;Are Interdomain Interactions Critical for Polysialylation of the Ig5 N-glycans?;127
10.1.7;Reconstitution of PolyST Recognition and Polysialylation of an Unpolysialylated NCAM-OCAM Chimeric Protein;128
10.1.8;A Model of PolyST-NCAM Interaction;130
10.1.9;Future Directions;130
10.1.10;References;131
11;Berezin_Ch08.pdf;136
11.1;The Role of PSA-NCAM in Adult Neurogenesis;136
11.1.1;Introduction;136
11.1.2;PSA-NCAM Expression in Adult Neurogenic Sites;137
11.1.3;Putative Functions of PSA-NCAM in Adult Neurogenesis;138
11.1.3.1;Neuronal Precursor Migration;138
11.1.3.2;Survival of Newly Generated Neurons;140
11.1.3.3;Neuronal Precursor Differentiation;141
11.1.4;Concluding Remarks;142
11.1.5;References;143
12;Berezin_Ch09.pdf;146
12.1;Use of PSA-NCAM in Repair of the Central Nervous System;146
12.1.1;Introduction;146
12.1.2;Polysialic Acid and Global Regulation of Cell Interactions;146
12.1.3;PSA-Induced Tissue Plasticity;147
12.1.3.1;PSA Promotes Precursor Cell Migration;148
12.1.3.2;PSA Facilitates Development of Neuronal Projections;148
12.1.4;Use of PSA Gain-of-Function to Promote Adult Tissue Repair;148
12.1.4.1;Regeneration of Damaged CNS Axons;149
12.1.4.2;Delivery of Neural Progenitors to a Brain Injury;151
12.1.5;Summary and Prospects;153
12.1.6;References;154
13;Berezin_Part-III.pdf;157
14;Berezin_Ch10.pdf;158
14.1;Signaling Pathways Involved in NCAM-Induced Neurite Outgrowth;158
14.1.1;Introduction;158
14.1.2;The MAPK Pathway;160
14.1.3;Fibroblast Growth Factor Receptor;160
14.1.4;Nonreceptor Tyrosine Kinases, Fyn and FAK;162
14.1.5;Rafts and Cytoskeletal Components;163
14.1.6;Intracellular Ca2+ and Activation of CaMKII;166
14.1.7;PKC;167
14.1.8;cAMP and PKA;168
14.1.9;The cGMP Pathway;168
14.1.10;PI3K and Akt;169
14.1.11;CREB;169
14.1.12;Concluding Remarks;170
14.1.13;References;171
15;Berezin_Ch11.pdf;176
15.1;Role of the Growth-Associated Protein GAP-43 in NCAM-Mediated Neurite Outgrowth;176
15.1.1;Introduction;176
15.1.2;Role of NCAM in the Nervous System;176
15.1.3;Role of GAP-43 in Remodeling of the Actin Cytoskeleton and Neurite Outgrowth;177
15.1.4;Involvement of GAP-43 in Neuronal Adhesion and NCAM-Mediated Neurite Outgrowth;178
15.1.5;Role of GAP-43 Phosphorylation in NCAM-Mediated Neurite Outgrowth;179
15.1.6;FGFR Function Is Required for NCAM-Stimulated GAP-43 Phosphorylation;180
15.1.7;PSA-NCAM and GAP-43 Are Coexpressed as Plasticity-Promoting Molecules: Possible Signaling Mechanisms Linking PSA-NCAM to GAP-43;180
15.1.8;Differential Role of NCAM Isoforms in GAP-43-Mediated Neurite Outgrowth;181
15.1.9;Functional Complex of NCAM-180 with GAP-43 and Spectrin;182
15.1.10;Open Question: Fyn/RPTPa Association with NCAM-180/Spectrin/GAP-43 Complex;183
15.1.11;NCAM and Growth-Associated Proteins BASP1 and MARCKS;183
15.1.12;References;185
16;Berezin_Ch12.pdf;190
16.1;The Neural Cell Adhesion Molecule NCAM and Lipid Rafts;190
16.1.1;Introduction;190
16.1.2;Lipid Rafts;191
16.1.3;Localisation of NCAM Inside and Outside Lipid Rafts;193
16.1.4;Localisation of NCAM Signalling Partners in Lipid Rafts and the Importance of Lipid Rafts for NCAM Signalling;195
16.1.4.1;The FGF Receptor;195
16.1.4.2;Fyn Kinase and RPTPa;195
16.1.4.3;Spectrin;197
16.1.4.4;Growth-Associated Protein-43;199
16.1.5;Conclusions and Perspectives;201
16.1.6;References;201
17;Berezin_Ch13.pdf;206
17.1;The Neural Cell Adhesion Molecule and Epidermal Growth Factor Receptor: Signaling Crosstalk;206
17.1.1;Introduction;206
17.1.2;Interactions Between NCAMs and the EGF Receptor in Drosophila;207
17.1.3;The Mammalian EGF Receptor: Regulation and Role in the Nervous System;208
17.1.4;Crosstalk Between Neuronal CAMs and EGF Receptor Signaling in Mammalian Cells;210
17.1.5;Conclusions and Perspectives;212
17.1.6;References;213
18;Berezin_Part-IV.pdf;217
19;Berezin_Ch14.pdf;218
19.1;Biosynthesis of NCAM;218
19.1.1;Introduction;218
19.1.2;Transcription of NCAM Gene;219
19.1.3;Alternative Splicing of NCAM Gene;219
19.1.4;Biosynthesis and Intracellular Transport of NCAM Molecule;220
19.1.5;Posttranslational Modifications: Glycosylation, Sulfation, Phosphorylation, and Palmitoylation;221
19.1.5.1;N-Linked Glycosylation of NCAM;222
19.1.5.2;O-Linked Glycosylation of NCAM;222
19.1.5.3;NCAM Polysialylation;222
19.1.5.4;The HNK-1/L2 Epitope on NCAM;223
19.1.5.5;NCAM Phosphorylation;223
19.1.5.6;NCAM Sulfation;223
19.1.5.7;NCAM Palmitoylation;224
19.1.6;Cellular Distribution of NCAM;224
19.1.7;NCAM Expression in Various Organs and Tissues During Development;224
19.1.8;Conclusions;226
19.1.9;References;226
20;Berezin_Ch15.pdf;231
20.1;Soluble NCAM;231
20.1.1;Introduction;231
20.1.2;Characterization of Soluble NCAM;232
20.1.3;The Source of Soluble NCAM;233
20.1.3.1;Secretion;233
20.1.3.2;Enzymatic Cleavage of the Extracellular Domain;233
20.1.3.3;Detached NCAM-Containing Membrane Fragments;235
20.1.4;Biological Effect of Soluble NCAM;235
20.1.4.1;In Vitro;235
20.1.4.2;In Vivo;237
20.1.5;Soluble NCAM in Disease;238
20.1.5.1;Schizophrenia;240
20.1.5.2;Mood Disorders;240
20.1.5.3;Neurodegenerative Disorders;241
20.1.5.4;Cancer;241
20.1.5.5;Others Disorders;242
20.1.6;Summary;242
20.1.7;References;243
21;Berezin_Part-V.pdf;247
22;Berezin_Ch16.pdf;248
22.1;Role of NCAM in Spine Dynamics and Synaptogenesis;248
22.1.1;Introduction;248
22.1.1.1;Adhesion Molecules and Synaptogenesis;249
22.1.1.2;Role of NCAM and PSA-NCAM in Synaptic Function and Plasticity;250
22.1.1.3;Role of PSA-NCAM in Synaptogenesis;251
22.1.1.4;Dynamic Aspect of Spine Turnover and Synapse Formation;252
22.1.1.5;Regulation of Spine Stability and Function by PSA-NCAM/NCAM Ratio;255
22.1.2;Conclusion;256
22.1.3;References;256
23;Berezin_Ch17.pdf;260
23.1;NCAM in Long-Term Potentiation and Learning;260
23.1.1;Introduction;260
23.1.2;NCAM in Learning and LTP;262
23.1.3;NCAM Expression and Localization in Synaptic Plasticity;265
23.1.4;PSA-NCAM in Synaptic Plasticity;266
23.1.5;Synaptic Plasticity in NCAM-Deficient Mice;267
23.1.6;NCAM in Synaptogenesis;268
23.1.7;Concluding Remarks;269
23.1.8;References;270
24;Berezin_Ch18.pdf;274
24.1;Role of NCAM in Emotion and Learning;274
24.1.1;Introduction;274
24.1.2;General Features of NCAM in the Central Nervous System: Molecular Structure and Function;274
24.1.3;NCAM and Emotion;275
24.1.4;NCAM in Learning: Functional Studies;281
24.1.5;NCAM in Learning: Correlative Studies;283
24.1.6;PSA-NCAM in Learning;284
24.1.7;NCAM and PSA-NCAM: Sensitive Indices of “Emotional Learning”;285
24.1.8;Mechanisms Related to NCAM Actions on Learning;293
24.1.9;References;294
25;Berezin_Part-VI.pdf;300
26;Berezin_Ch19.pdf;301
26.1;NCAM in Neuropsychiatric and Neurodegenerative Disorders;301
26.1.1;Introduction;301
26.1.2;Schizophrenia;304
26.1.3;Mood Disorders: Bipolar Disorder;306
26.1.4;Mood Disorders: Depression;307
26.1.5;Anxiety Disorders;309
26.1.6;Alzheimer’s Disease;310
26.1.7;Future Directions;311
26.1.8;References;312
27;Berezin_Ch20.pdf;320
27.1;Neural Cell Adhesion Molecule in Cancer: Expression and Mechanisms;320
27.1.1;Introduction;320
27.1.2;NCAM in Human Cancer: An Overview;321
27.1.2.1;Brain Tumors;322
27.1.2.2;Myeloma;322
27.1.2.3;Acute Myeloid Leukemia;323
27.1.2.4;Gastrointestinal Cancers;323
27.1.2.5;Thyroid Cancer;324
27.1.2.6;Small Cell Lung Cancer;325
27.1.3;How Does NCAM Modulate Tumor Development?;325
27.1.3.1;NCAM and Tumor–Microenvironment Interactions: The Rip1Tag2 Model;325
27.1.3.2;NCAM and Tumor Angiogenesis;327
27.1.3.3;The NCAM–FGFR Crosstalk;328
27.1.4;Perspectives;330
27.1.5;References;330
28;Berezin_Part-VII.pdf;335
29;Berezin_Ch21.pdf;336
29.1;NCAM Mimetic Peptides: An Update;336
29.1.1;Introduction;336
29.1.2;Ectodomain Structure of NCAM and Natural Extracellular Interaction Partners;342
29.1.3;Artificial NCAM-Binding Peptides;342
29.1.3.1;C3;342
29.1.3.2;NBP10;343
29.1.3.3;ENFIN2 and ENFIN11;344
29.1.4;Synthetic NCAM-Derived Peptides Targeting NCAM;344
29.1.4.1;P2;344
29.1.4.2;P1-B;345
29.1.4.3;P-3-G;345
29.1.4.4;P-3-DE;345
29.1.5;Synthetic NCAM-Derived Peptides Targeting Heterophilic Ligands of NCAM;345
29.1.5.1;FGL;346
29.1.5.2;FRM;347
29.1.5.3;DekaCAM;347
29.1.5.4;BCL;347
29.1.5.5;Encamin Peptides;348
29.1.5.6;HBP;348
29.1.6;Conclusions;348
29.1.7;References;349
30;Berezin_Ch22.pdf;353
30.1;Synthetic NCAM-Derived Ligands of the Fibroblast Growth Factor Receptor;353
30.1.1;Introduction;353
30.1.2;NCAM Interactions with FGFR;354
30.1.3;Structural Basis for the Interaction Between NCAM and FGFR;355
30.1.4;FGL, a Synthetic FGFR-Ligand Derived from the Second NCAM FN3 Module;356
30.1.5;FGL-Induced Intracellular Signaling;357
30.1.6;Cellular Responses to FGL In Vitro;358
30.1.7;Effects of FGL In Vivo;359
30.1.8;BCL, a Synthetic FGFR Ligand Derived from the Second NCAM FN3 Module;360
30.1.9;FRM, a Synthetic FGFR Ligand Derived from the First NCAM FN3 Module;361
30.1.10;DekaCAM, a Synthetic NCAM and FGF10-Derived FGFR Ligand;362
30.1.11;Mechanism of FGFR Activation by the Peptides;363
30.1.12;Different NCAM-Derived FGFR Ligands Induce Differential Responses;364
30.1.13;Conclusions and Future Directions;366
30.1.14;References;366
31;Berezin_Ch23.pdf;371
31.1;Dendritic Spine and Synapse Morphological Alterations Induced by a Neural Cell Adhesion Molecule Mimetic;371
31.1.1;Introduction;371
31.1.1.1;NCAM Involvement in Synapse Formation;371
31.1.1.2;NCAM Involvement in Memory;372
31.1.2;What Is the Mode of Action of NCAM at the Cellular/Synaptic Level?;372
31.1.3;How Does NCAM Influence Synaptic and Dendritic Morphology?;373
31.1.3.1;Aged Rats;373
31.1.3.2;Spine Volume, and Percentage Distribution of Synapse on Spine Types;373
31.1.3.3;Curvature Changes;374
31.1.3.4;Volume and Surface Area of Endososmes/Multivesicular Bodies;375
31.1.4;Does FGL Exert a Similar Effect on Younger Animals?;377
31.1.5;The Mechanism of NCAM Action at the Synaptic Level?;377
31.1.5.1;Multivesicular Bodies and Clathrin Coated Pits;378
31.1.6;References;379
32;Berezin_Part-VIII.pdf;382
33;Berezin_Ch24.pdf;383
33.1;Fasciclin II: The NCAM Ortholog in Drosophila melanogaster;383
33.1.1;Introduction;383
33.1.2;Alternative Splicing and Posttranslational Modifications;385
33.1.3;Fasciclin II Expression;386
33.1.4;Cell Adhesion Mechanism;387
33.1.5;Proneural Functions;387
33.1.6;Axon Growth and Guidance;388
33.1.7;Activation of EGFR and FGFR;388
33.1.8;Synaptic Functions;390
33.1.9;References;392
34;Berezin_Ch25.pdf;398
34.1;The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM;398
34.1.1;Cell Adhesion Molecules in the Nervous System;399
34.1.2;The Identification of NCAM2;399
34.1.3;Isoforms and Protein Structure of NCAM2;400
34.1.4;Extracellular Posttranslational Modifications of NCAM2;403
34.1.4.1;Glycosylation;403
34.1.5;Intracellular Posttranslational Modifications of NCAM2;406
34.1.5.1;Acetylation;406
34.1.5.2;Phosphorylation;407
34.1.6;Expression of NCAM2;407
34.1.7;Homophilic NCAM2 Interactions;408
34.1.8;Heterophilic Binding Partners of NCAM2;408
34.1.9;Functions;409
34.1.9.1;NCAM2 in the Olfactory System;409
34.1.9.2;NCAM2 in Down Syndrome, Autism, and Cancer;410
34.1.10;Concluding Remarks;411
34.1.11;References;412
35;Berezin_Part-IX.pdf;416
36;Berezin_Ch26.pdf;417
36.1;Honoring Dr. Elisabeth Bock;417
36.1.1;References;419
37;Berezin_Backmatter.pdf;421



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.