E-Book, Englisch, 294 Seiten, eBook
Bereiter-Hahn / Anderson / Reif Cytomechanics
1987
ISBN: 978-3-642-72863-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The Mechanical Basis of Cell Form and Structure
E-Book, Englisch, 294 Seiten, eBook
ISBN: 978-3-642-72863-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. General Principles.- I.1 Mechanical Principles of Architecture of Eukaryotic Cells.- 1.1 Introduction.- 1.2 Basic Mechanical Parameters of Cells.- 1.3 Cellular Viscosity.- 1.4 Elasticity, Contractile Forces, and Surface Tension.- 1.5 The Structural Basis of Cell Mechanics.- 1.5.1 Actin and Actin-Based Structures.- 1.5.2 Membrane-Associated Actin Fibrils.- 1.5.3 Microtubules and Related Structures.- 1.5.4 Intermediate Filaments and Related Structures.- 1.6 Aspects of Cytoplasmic Architecture.- 1.6.1 Localization of Organelles.- 1.6.2 Interaction of Cytoskeletal Elements in Generating Cell Shape.- 1.6.3 Cytoplasmic Streaming.- 1.7 Physiological Effects of Mechanical Stresses.- 1.7.1 Mechanical Aspects of Morphogenesis During Embryo Development.- 1.7.2 Influences of Mechanical Stresses on Cellular Metabolism.- References.- I.2 Evaluation of Cytomechanical Properties.- 2.1 Introduction.- 2.2 Physical Structure of the Cell.- 2.3 Mechanical Properties of the Cell Surface.- 2.3.1 Relationship Between the Surface Force and the Internal Pressure of the Cell.- 2.3.2 Direct Measurement of the Internal Pressure.- 2.3.3 Indirect Measurements of the Surface Force and the Internal Pressure.- 2.3.3.1 Compression Method.- 2.3.3.2 Suction Method.- 2.3.3.3 Stretching Method.- 2.3.3.4 Sessile Drop Method.- 2.3.4 Elasticity and Viscoelasticity of the Cell Surface.- 2.4 Mechanical Properties of the Endoplasm.- 2.4.1 Measurements of Mechanical Properties of the Endoplasm.- 2.4.1.1 Centrifuge Method.- 2.4.1.2 Magnetic Particle Method.- 2.4.1.3 Capillary Method.- 2.4.1.4 Brownian Movement Method.- 2.4.1.5 Diffusion Method.- 2.4.2 Relationship Between the Mechanical Properties and Submicroscopic Structure of the Endoplasm.- References.- I.3 Use of Finite Element Methods in Cytomechanics: Study of the Mechanical Stability of the Skeletal Basal Plate of Callimitra a Biomineralizing Protozoan.- 3.1 Introduction.- 3.2 Callimitra Architecture.- 3.3 Finite Element Approach.- 3.4 Further Applications of FEM and Their Implications.- References.- I.4 Mechanics and Hydrodynamics of Rotating Filaments.- 4.1 The Molecular Basis of Filament Rotation.- 4.2 Longitudinal (Screw-Mechanical) Effects.- 4.2.1 Waving and Screwing.- 4.2.2 The Oscillation.- 4.2.3 Control of Polymerization and Depolymerization.- 4.2.4 The Translocation of Particles.- 4.2.5 Crossbridges.- 4.3 Lateral (Hydrodynamic) Effects.- 4.3.1 Pattern of Flows.- 4.3.2 Flows Adjacent to a Wall.- 4.3.3 Flows and Molding of an Adjacent Liquid Surface.- 4.3.4 Rolling Motions and Self-Arrangements.- References.- II. The Supramolecular Level.- II.1 Mechanical Concepts of Membrane Dynamics: Diffusion and Phase Separation in Two Dimensions.- 1.1 Introduction.- 1.2 Translational Diffusion in Fluid Phase Membranes.- 1.2.1 Net Transport by Diffusion: The Einstein-Smoluchowski Equation.- 1.2.2 Diffusion Modeled as a Stochastic Random Walk: The Free Volume Model.- 1.2.3 Diffusion Modeled by Continuum Hydromechanics: The Saffman-Delbrück Model.- 1.2.4 Diffusion in Biological Membranes.- 1.3 Fluid-Solid Phase Separation in Two Dimensions.- 1.3.1 Effective Medium and Percolation Theory.- 1.3.2 Phase Separation in Lipid Monolayers.- 1.3.3 Phase Separation in Biological Membranes.- 1.4 Concluding Comments.- References.- II.2 Implications of Microtubules in Cytomechanics: Static and Motile Aspects.- 2.1 Microtubule Structure: Statics and Elasticity.- 2.1.1 Substructure of Microtubules.- 2.1.2 Rigidity of Microtubules.- 2.1.3 Integration of Microtubules into the Cytoskeleton.- 2.2 Microtubule-Associated Dynamics: Motion and Tension.- 2.2.1 Elongation of Microtubules.- 2.2.2 Shortening of Microtubules.- 2.2.3 Treadmilling of Microtubules.- 2.2.4 Organelle Movement Along Microtubules.- 2.2.5 Gliding of Microtubules.- 2.2.6 Sliding of Microtubules.- 2.2.7 Movement of Axostyle Microtubules.- 2.2.8 Complex Interactions of Microtubules.- 2.2.9 Contraction of Microtubule Arrays.- 2.3 Conclusions.- References.- II.3 The Nature and Significance of ATP-Induced Contraction of Microtubule Gels.- 3.1 Introduction.- 3.2 Microtubule Gelation-Contraction.- 3.2.1 In Vitro Experiments.- 3.2.2 Significance of Microtubule Gelation-Contraction in Living Cells.- 3.2.2.1 Mitotic Spindle.- 3.2.2.2 Axonal Transport.- References.- II.4 Generation of Propulsive Forces by Cilia and Flagella.- 4.1 Introduction.- 4.2 Hydrodynamic Interactions.- 4.3 Passive Elastic Properties.- 4.4 Active Mechanical Properties.- 4.5 Conclusions.- References.- II.5 The Cortical Cytoplasmic Actin Gel.- 5.1 Historical Background.- 5.2 The Assembly of Actin and Actin-Binding Proteins Regulating Actin Assembly.- 5.3 The Rheology of Actin and Its Modulation by Actin-Binding Proteins and Other Factors.- 5.4 Actin Gelation in the Cell.- 5.5 Regulation of the Actin Sol/Gel Transformation in the Cell.- References.- II.6 Dynamic Organization and Force Production in Cytoplasmic Strands.- 6.1 Nature and Locomotory Phenomena of Physarum Plasmodia.- 6.2 The Generation of Hydrostatic Pressure Flow.- 6.3 Contractile Activities as Measured by Tensiometry.- 6.4 Analysis of Morphological Alterations Induced by Stretch Experiments.- 6.5 Nature and Implications of the Contraction Cycle.- 6.6 The Widely Unknown Regulation.- 6.7 Cytomechanical Implications.- References.- III. Mechanical Factors Determining Morphogenesis of Protists.- III.1 Determination of Body Shape in Protists by Cortical Structures.- 1.1 Introduction.- 1.2 Intracellular Cortex Structures.- 1.3 Extracellular Cortex Structures.- 1.4 Concluding Remarks.- References.- III.2 Morphogenetic Forces in Diatom Cell Wall Formation.- 2.1 Introduction.- 2.2 Possible Functions of the Diatom Cell Wall.- 2.3 Preconditions of Valve Formation.- 2.3.1 Mitosis and Cleavage.- 2.3.2 The Molding Surface: The Plasmalemma.- 2.3.3 The Mold for the Valve Outline.- 2.4 Valve Formation.- 2.4.1 The Silica Deposition Vesicle (SDV).- 2.4.2 The Role of the Nucleus, Microtubule Center, and Microtubules.- 2.4.3 The Molding System for the Valve Pattern.- 2.4.4 Mechanisms for Mechanical Stabilization of the Valve.- 2.4.5 The Organic Coat and Valve Release.- 2.5 Conclusions.- References.- III.3 The Cytoskeletal and Biomineralized Supportive Structures in Radiolaria.- 3.1 Introduction.- 3.2 Cytoskeletal Organization of the Axopodia.- 3.3 Biomineralization and Skeletal Morphogenesis.- 3.3.1 Analysis of Growth Phases.- 3.3.2 Finite Element Analysis.- 3.3.2.1 FEM Descriptors.- 3.3.2.2 FEM Results.- 3.3.2.3 Limitations and Implications of FEM Analysis with Radiolaria.- References.- IV. Mechanical Factors Determining Plant Cell Morphogenesis.- IV. 1 Mechanical and Hydraulic Aspects of Plant Cell Growth.- 1.1 Introduction.- 1.2 Directionality of Cell Growth.- 1.2.1 Patterns of Expansion.- 1.2.2 Wall Architecture.- 1.2.3 Multinet Growth.- 1.2.4 The Wall Matrix.- 1.3 Wall Loosening and Expansion.- 1.3.1 Physics of Wall Expansion.- 1.3.2 Stress Relaxation.- 1.3.3 Molecular Models of Wall Loosening.- 1.4 Water Uptake and Turgor Maintenance.- 1.4.1 Physics of Water Uptake.- 1.4.2 Restriction of Growth by Water Transport.- 1.4.3 Solute Uptake.- 1.5 Summary.- References.- IV.2 Plant Cytomechanics and Its Relationship to the Development of Form.- 2.1 Introduction.- 2.2 The Logic of Development.- 2.2.1 The Role of the Genome in the Development of Form.- 2.2.2 The Role of the Environment in the Development of Form.- 2.3 The Architecture of Plant Form.- 2.3.1 Division and Growth. The Basic Events.- 2.3.2 Growth as a Source of Mechanical Stress.- 2.3.3 Factors Affecting Stress Distribution in Embryonic Plant Organs.- 2.3.4 The Role of Stress in the Generation of Form.- 2.4 The Ultrastructural Basis of Cell Behavior.- 2.4.1 The Role of Cytomechanics in the Development of Form.- 2.5 Other Responses to Mechanical Stimuli. Reaction Wood.- 2.5.1 Tropic Responses.- 2.6 Meiosis as a Mechanically-Induced Process.- 2.6.1 The Sporangium as a Stress-Focusing Device.- 2.6.2 Isotropic Stress as a Developmental Effector.- References.- IV.3 Mechanical Properties of the Cyclamen Stalk and Their Structural Basis.- 3.1 Anatomy of the Cyclamen Persicum Flower Stalk.- 3.2 Internal Hydrostatic Pressure.- 3.3 Behavior Under Ultimate Load.- 3.4 Summary.- References.- V. Mechanical Forces Determining the Shape of Metazoan Cells.- V.I Forces Shaping an Erythrocyte.- 1.1 Introduction.- 1.2 Membrane Elasticity.- 1.2.1 Shear Elasticity.- 1.2.1.1 Molecular Basis of Shear Elasticity.- 1.2.1.2 Metabolic, pH, and Ionic Effects.- 1.2.2 Area Elasticity.- 1.2.2.1 Molecular Basis of Area Elasticity.- 1.2.3 Bending Elasticity.- 1.2.3.1 Molecular Basis of Bending Rigidity.- 1.3 Membrane Viscosity.- 1.3.1 Molecular Basis of Membrane Viscosity.- 1.4 Erythrocyte Shape.- References.- V.2 Hydrostatic Pressure in Metazoan Cells in Culture: Its Involvement in Locomotion and Shape Generation.- 2.1 Introduction.- 2.2 Osmotic Equations Applied to Cells.- 2.3 Physical State of Cell Water.- 2.4 Solute Leakage.- 2.5 Osmotic Behavior of Cytogel.- 2.6 Generation of Intracellular Hydrostatic Pressure.- 2.6.1 Osmotic Behavior of Cells in Culture.- 2.6.2 Determination of Hydrostatic Pressure in Culture Cells.- 2.6.3 “Visualization” of Tension in the Cortical Fibrillar-Meshwork-Plasma Membrane Complex.- 2.7 Functional Significance of Hydrostatic Pressure in Wall-Free Cells.- 2.7.1 Cell Shape.- 2.7.2 Cell Locomotion.- 2.7.3 Integration of Cells into Tissues.- 2.7.4 Hydraulic Interaction of Organelles.- References.- V.3 The Transmission of Forces Between Cells and Their Environment.- 3.1 Introduction.- 3.2 Focal Contact: Subcellular Level.- 3.3 Traction: Cellular Level.- 3.4 Adhesion: Supracellular Level.- 3.5 Conclusions.- References.




