Buch, Englisch, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 283 g
Reihe: Universitext
An Introduction to Mathematical Finance
Buch, Englisch, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 283 g
Reihe: Universitext
ISBN: 978-3-540-40502-3
Verlag: Springer Berlin Heidelberg
This is a very basic and accessible introduction to option pricing, invoking a minimum of stochastic analysis and requiring only basic mathematical skills. It covers the theory essential to the statistical modeling of stocks, pricing of derivatives with martingale theory, and computational finance including both finite-difference and Monte Carlo methods.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Anlagen & Wertpapiere
Weitere Infos & Material
1 Introduction.- 1.1 An Introduction to Options in Finance.- 1.2 Some Useful Material from Probability Theory.- 2 Statistical Analysis of Data from the Stock Market.- 2.1 The Black & Scholes Model.- 2.2 Logarithmic Returns from Stocks.- 2.3 Scaling Towards Normality.- 2.4 Heavy-Tailed and Skewed Logreturns.- 2.5 Logreturns and the Normal Inverse Gaussian Distribution.- 2.6 An Alternative to the Black & Scholes Model.- 2.7 Logreturns and Autocorrelation.- 2.8 Conclusions Regarding the Choice of Stock Price Model.- 3 An Introduction to Stochastic Analysis.- 3.1 The Itô Integral.- 3.2 The Itô Formula.- 3.3 Geometric Brownian Motion as the Solution of a Stochastic Differential Equation.- 3.4 Conditional Expectation and Martingales.- 4 Pricing and Hedging of Contingent Claims.- 4.1 Motivation from One-Period Markets.- 4.2 The Black & Scholes Market and Arbitrage.- 4.3 Pricing and Hedging of Contingent Claims X= f(S(T)).- 4.4 The Girsanov Theorem and Equivalent Martingale Measures.- 4.5 Pricing and Hedging of General Contingent Claims.- 4.6 The Markov Property and Pricing of General Contingent Claims.- 4.7 Contingent Claims on Many Underlying Stocks.- 4.8 Completeness, Arbitrage and Equivalent Martingale Measures.- 4.9 Extensions to Incomplete Markets.- 5 Numerical Pricing and Hedging of Contingent Claims.- 5.1 Pricing and Hedging with Monte Carlo Methods.- 5.2 Pricing and Hedging with the Finite Difference Method.- A Solutions to Selected Exercises.- References.




