E-Book, Englisch, 285 Seiten
Benamara / Haddar / Tarek Advances in Mechanical Engineering and Mechanics
1. Auflage 2019
ISBN: 978-3-030-19781-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the 4th Tunisian Congress on Mechanics, CoTuMe 2018, Hammamet, Tunisia, October 13-15, 2018
E-Book, Englisch, 285 Seiten
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-3-030-19781-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book reports on original theoretical and experimental findings related to a number of cutting-edge topics in mechanics and mechanical engineering, such as structure modelling and computation; design methodology and manufacturing processes; mechanical behaviour of materials; fluid mechanics and energy; and heat and mass transfer. It includes a selection of papers presented at the 4th Tunisian Congress on Mechanics, CoTuMe'2018, held in Hammamet, Tunisia, on October 13-15, 2018. Thanks to the good balance of theory and practical findings, it offers a timely snapshot for researchers and industrial communities alike, and a platform to facilitate communication and collaboration between the two groups.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Organization;8
2.1;Editors;8
2.2;Scientific Committee;8
2.3;Organizing Committee;12
3;About this Book;13
4;Contents;14
5;Structure Modelling and Computation;17
6;Femoral Postoperative Bone Adaptation – Numerical Calculation and Clinical Validation with DEXA Investigations;18
6.1;Abstract;18
6.2;1 Introduction;18
6.3;2 Materials and Methods;21
6.3.1;2.1 Modelling;21
6.3.2;2.2 Bone Adaptation Law;23
6.3.3;2.3 DEXA Investigations;25
6.4;3 Results;26
6.5;4 Conclusion and Discussion;28
6.6;Acknowledgements;28
6.7;References;29
7;Intelligent Neural Network Control for Active Heavy Truck Suspension;31
7.1;Abstract;31
7.2;1 Introduction;31
7.3;2 Suspension Systems;32
7.4;3 Problem Formulation;33
7.5;4 Active Suspension System Schema and Model;34
7.6;5 Artificial Neural Networks (ANN);35
7.7;6 Conclusion;37
7.8;Acknowledgements;37
7.9;References;37
8;Analytical Modeling of the Tool Trajectory with Local Smoothing;39
8.1;Abstract;39
8.2;1 Introduction;39
8.3;2 Geometric Modeling of the Smoothing Element;40
8.4;3 Experimental Tests and Results;43
8.5;4 Conclusion;45
8.6;Acknowledgements;46
8.7;References;46
9;Repairing Cracked Structures Using the IF Process;47
9.1;Abstract;47
9.2;1 Introduction;47
9.3;2 FE Analysis;48
9.4;3 Results and Discussion;50
9.5;4 Conclusion;53
9.6;References;53
10;Stochastic Design of Non-linear Electromagnetic Vibration Energy Harvester;54
10.1;Abstract;54
10.2;1 Introduction;54
10.3;2 Mechanical Model;55
10.4;3 Numerical Examples;57
10.4.1;3.1 Deterministic Study;57
10.4.2;3.2 Stochastic Study;58
10.5;4 Conclusions;60
10.6;References;61
11;Mechanical Characterization of Coating Materials Based on Nanoindentation Technique;62
11.1;Abstract;62
11.2;1 Introduction;62
11.3;2 Mechanical Characterization of TiN/Zr60Ni10Cu20Al10;63
11.3.1;2.1 Experimental Details;63
11.3.2;2.2 Analytical Model;64
11.4;3 Results;65
11.4.1;3.1 Numerical Model;65
11.4.2;3.2 Numerical Confrontation;66
11.5;4 Conclusion;67
11.6;References;68
12;An Inverse Calculation of Local Elastoplastic Parameters from Instrumented Indentation Test;69
12.1;Abstract;69
12.2;1 Introduction;69
12.3;2 Numerical Study;70
12.4;3 Parameters Identification Procedure;72
12.4.1;3.1 Inverse Analysis Technique;72
12.4.2;3.2 Validation of the Proposed Procedure;73
12.5;4 Application;73
12.6;5 Conclusion;75
12.7;References;75
13;Finite Element Simulation of Single Point Incremental Forming Process of Aluminum Sheet Based on Non-associated Flow Rule;77
13.1;Abstract;77
13.2;1 Introduction;77
13.3;2 Elasto-Plastic Constitutive Equations Based on Non-associated Flow Rule;78
13.4;3 Numerical Results;80
13.5;4 Conclusion;83
13.6;References;83
14;Dispersive Waves in 2D Second Gradient Continuum Media;84
14.1;Abstract;84
14.2;1 Introduction;84
14.3;2 Homogenized Viscoelastic Second Gradient Behavior of Periodic Beam Lattice;85
14.3.1;2.1 Discrete Homogenization Method;85
14.4;3 Dynamical Equilibrium and Characteristic Equation;87
14.5;4 Dispersion Relations and Damping Ratio Evolutions;88
14.6;5 Conclusion;90
14.7;References;91
15;Piezoelastic Behavior of Adaptive Composite Plate with Integrated Sensors and Actuators;92
15.1;Abstract;92
15.2;1 Introduction;92
15.3;2 Theoretical Formulations;93
15.3.1;2.1 Kinematic Assumptions;94
15.3.2;2.2 Weak Form and Finite Element Approximation;94
15.4;3 Numerical Results;96
15.5;4 Conclusion;98
15.6;References;98
16;Design Methodology and Manufacturing Process;100
17;Cycle Time and Hole Quality in Drilling Canned Cycle;101
17.1;Abstract;101
17.2;1 Introduction;101
17.3;2 Feed Rate Modelling;102
17.3.1;2.1 Tool Path and Specific Parameters in Drilling Cycle;102
17.3.2;2.2 Feed Rate Modeling for Linear Interpolation;102
17.4;3 Modeling of Drilling Cycle Time;103
17.4.1;3.1 Cycle Time tc;104
17.4.2;3.2 Cutting Time tu;104
17.5;4 Results and Discussions;104
17.5.1;4.1 Experimental Work;104
17.5.2;4.2 Drilling Cycle Time;105
17.5.3;4.3 Drilling Quality;107
17.6;5 Conclusion;108
17.7;Acknowledgements;108
17.8;References;108
18;DMST Investigation of the Effect of Cambered Blade Curvature on Small H-Darrieus Rotor Performance;109
18.1;Abstract;109
18.2;1 State-of-the-Art of Wind Turbine Rotor Design;109
18.3;2 QBlade Simulation Tool;110
18.4;3 DMST Model Validation;110
18.5;4 Results and Discussion;111
18.5.1;4.1 Effect of Pitch Angle;111
18.5.2;4.2 Effect of Aspect Ratio (AR);112
18.5.3;4.3 Effect of Freestream Velocity;112
18.5.4;4.4 Effect of Solidity;113
18.5.5;4.5 Effect of Variable Chord Length;113
18.6;5 Conclusion;115
18.7;6 Future Work;115
18.8;References;116
19;A New CAD-CAM Approach Using Interacting Features for Incremental Forming Process;117
19.1;Abstract;117
19.2;1 Introduction;117
19.3;2 SPIF Process;118
19.4;3 API-CATIA Implementation;119
19.5;4 Development of the Proposed CAD System;120
19.5.1;4.1 Case Study;123
19.6;5 Conclusion;124
19.7;Acknowledgements;124
19.8;References;124
20;A Novel Approach for Robust Design of Sewing Machine;126
20.1;Abstract;126
20.2;1 Introduction;126
20.3;2 Modeling of the Motor Driven NBTTL System;127
20.3.1;2.1 The NBTTL Mechanism;127
20.3.2;2.2 The Mechatronic Model of the Motor Driven NBTTL System;128
20.4;3 Robust Design of the Motor Driven NBTTL System;129
20.5;4 Results and Discussion;130
20.6;5 Conclusion;132
20.7;Appendix;133
20.8;References;133
21;Meshfree Analysis of 3-D Double Directors Shell Theory;134
21.1;Abstract;134
21.2;1 Introduction;134
21.3;2 Kinematics of Double Directors Shell Model;135
21.3.1;2.1 Displacement Field and Strains of the Shell Model;135
21.3.2;2.2 The Weak Form;136
21.3.3;2.3 Meshfree Approximation of High Order Shear Deformation Theory Considering the RPIM;137
21.4;3 Numerical Results and Discussions;138
21.5;4 Conclusion;140
21.6;References;140
22;Application of Artificial Intelligence to Predict Circularity and Cylindricity Tolerances of Holes Drilled on Marble;142
22.1;Abstract;142
22.2;1 Introduction;142
22.3;2 Experimental Study;143
22.4;3 Model of the Proposed ANN;144
22.5;4 Conclusion;147
22.6;Acknowledgements;147
22.7;References;147
23;Experimental Effect of Cutting Parameters and Tool Geometry in Drilling Woven CFRP;149
23.1;Abstract;149
23.2;1 Introduction;149
23.3;2 Experimental Work;150
23.3.1;2.1 Workpiece Material and Drills;150
23.3.2;2.2 Machining Tests;151
23.4;3 Results and Discussion;152
23.4.1;3.1 Thrust Force;152
23.4.2;3.2 Surface Quality;153
23.5;4 Conclusion;155
23.6;Acknowledgements;155
23.7;References;156
23.8;Journal article;156
23.9;Journal article only by DOI;156
23.10;Online document;156
24;Effects of the Tool Bending on the Cutting Force in Ball End Milling;157
24.1;Abstract;157
24.2;1 Introduction;157
24.3;2 Geometry of the Tool;158
24.4;3 Effect of the Bending on the Tool Geometry;159
24.5;4 Thermomechanical Cutting Force Modeling;160
24.6;5 Experimental Work;161
24.7;6 Results and Discussion;162
24.7.1;6.1 Cutting Force Results;162
24.7.2;6.2 Tool Radius;162
24.8;7 Conclusion;164
24.9;Acknowledgments;164
24.10;References;165
25;Influence of the Nose Radius on the Cutting Forces During Turning;166
25.1;Abstract;166
25.2;1 Introduction;166
25.3;2 Tool Geometry Modeling;167
25.4;3 Cutting Forces Modeling;169
25.5;4 Results and Discussion;170
25.6;5 Conclusion;172
25.7;Acknowledgments;172
25.8;References;172
26;Effect of the Interpolator Properties During the Multi-Point Hydroforming Process (MPHF);174
26.1;Abstract;174
26.2;1 Introduction;174
26.3;2 Description of the Experimental Set Up, Materials and Finite Element Model;175
26.4;3 Results and Discussion;177
26.4.1;3.1 The Effect of the Pins Geometry and Density of the Final Product Quality;177
26.4.2;3.2 The Effect of an Interpolator and a Cover Sheet Insertion;179
26.5;4 Conclusion;180
26.6;Acknowledgements;180
26.7;References;180
27;Materials: Mechanical Behaviour and Structure;181
28;Probabilistic Fatigue Life Prediction of Parabolic Leaf Spring Based on Latin Hypercube Simulation Method;182
28.1;Abstract;182
28.2;1 Introduction;182
28.3;2 Materials and Methods;183
28.4;3 Results and Discussion;185
28.5;4 Conclusion;188
28.6;References;188
29;The Relation Between R Phase Presence Level and Stress-Temperature Diagram of an Aged NiTi Shape Memory Alloy;190
29.1;Abstract;190
29.2;1 Introduction;190
29.3;2 Material and Experimental Method;191
29.3.1;2.1 Thermal Analysis;191
29.3.2;2.2 Microstructural Analysis;192
29.3.3;2.3 Mechanical Analysis;192
29.4;3 Results and Discussion;192
29.4.1;3.1 DSC Analysis;192
29.4.2;3.2 XRD Analysis;194
29.4.3;3.3 Compression Tests and Stress-Temperature Diagram;195
29.5;4 Conclusion;196
29.6;References;197
30;FTIR Spectroscopy Characterization and Numerical Simulation of Cyclic Loading of Carbon Black Filled SBR;199
30.1;Abstract;199
30.2;1 Introduction;199
30.3;2 Experimental;200
30.3.1;2.1 Sample Geometry and Materials;200
30.3.2;2.2 Mechanical Fatigue Characterization;200
30.3.3;2.3 Fourier Transform Infrared Characterization;201
30.4;3 Results and Discussion;202
30.4.1;3.1 Fillers Softening Effects;202
30.4.2;3.2 Fillers Microstructural Effects;203
30.4.2.1;3.2.1 ATR-IR Analysis;203
30.4.2.2;3.2.2 Molecular Network Kinetic;203
30.4.2.3;3.2.3 Numerical Simulation Results;205
30.5;4 Conclusion;206
30.6;Acknowledgement;206
30.7;References;206
31;Shear Bands Behavior in Notched Cu60Zr30Ti10 Metallic Glass;208
31.1;Abstract;208
31.2;1 Introduction;208
31.3;2 Experimental Procedure;209
31.4;3 Results and Discussions;210
31.4.1;3.1 Experimental Results;210
31.4.2;3.2 Numerical Results;211
31.4.2.1;3.2.1 Constitutive Model;211
31.4.2.2;3.2.2 Geometrical Model;212
31.4.2.3;3.2.3 Results;213
31.5;4 Conclusion;215
31.6;References;215
32;Analytical Study of Curvature Radius Effect on the Bending Stress and Fatigue Life of Parabolic Leaf Spring;217
32.1;Abstract;217
32.2;1 Introduction;217
32.3;2 Analytical Approach;218
32.4;3 FEM Approach;221
32.5;4 Fatigue Life Prediction;221
32.6;5 Results and Discussion;222
32.7;6 Conclusion;224
32.8;References;224
33;Improvement of the Predictive Ability of Polycyclic Fatigue Criteria for 42CrMo4 Nitrided Steels;225
33.1;Abstract;225
33.2;1 Introduction;225
33.3;2 Material, Treatment and Experimental Procedure;226
33.4;3 Numerical Procedure of Relaxed Residual Stress Determination;226
33.4.1;3.1 Numerical Procedure;226
33.4.2;3.2 Geometry, Mesh, Loading and Boundary Conditions;227
33.4.3;3.3 Cyclic Hardening Model for the Base Material;228
33.4.4;3.4 Application of SINES Criterion;229
33.5;4 Finite Elements Analysis Results and Discussion;230
33.6;5 Conclusion;231
33.7;References;232
34;Analysis of Surfaces Characteristics Stability in Grinding Process;234
34.1;Abstract;234
34.2;1 Introduction;234
34.3;2 Experiments;235
34.3.1;2.1 Material;235
34.3.2;2.2 Experimental Setup;235
34.3.3;2.3 Examination of Grinding Wheel Surface;236
34.3.3.1;2.3.1 Evaluation of Cutting-Edge Density and Spatial Distribution;237
34.3.4;2.4 Evaluation of Workpiece Characteristics;237
34.3.4.1;2.4.1 Effect on the Stability of the Roughness Indicators;237
34.3.4.2;2.4.2 Effect on the Stability of the Microhardness Distribution;238
34.4;3 Conclusion;239
34.5;References;239
35;Fluid Mechanics and Energy, Mass and Heat Transfer;241
36;Numerical Modelling of Cavitating Flows in Venturi;242
36.1;Abstract;242
36.2;1 Introduction;242
36.3;2 Mathematical and Numerical Model;243
36.3.1;2.1 Governing Equations;243
36.3.2;2.2 Mass Transfer Models;244
36.3.2.1;2.2.1 Kunz Model;244
36.3.3;2.3 Turbulence Models;244
36.4;3 Results and Discussions;244
36.4.1;3.1 Test Case: Geometry Venturi 8°;244
36.4.2;3.2 Computation Domain and Mesh Generation;245
36.4.2.1;3.2.1 Meshing;245
36.4.2.2;3.2.2 Open Foam: InterPhaseChangeFoam;245
36.4.2.3;3.2.3 Boundary and Operation Conditions;245
36.4.3;3.3 Study 2D: Global Validation;246
36.4.3.1;3.3.1 K-? RNG Model;246
36.4.3.2;3.3.2 K-? SST Model;246
36.4.3.3;3.3.3 Modified RNG K-? Model;247
36.5;4 Conclusions;249
36.6;References;249
37;Numerical Simulation of a Water Jet Impacting a Titanium Target;250
37.1;Abstract;250
37.2;1 Introduction;250
37.3;2 Problem Formulation;251
37.4;3 Numerical Models;252
37.4.1;3.1 Material Modeling;252
37.4.2;3.2 Mesh and Conversion to Particles;253
37.4.3;3.3 Boundary Conditions and Predefined Field;253
37.5;4 Numerical Results;253
37.5.1;4.1 Pressure on the Target;254
37.6;5 Comparison Between the Inclined Target and the Horizontal Target;256
37.7;6 Conclusions;257
37.8;References;258
38;Effect of Co-flow Stream on a Plane Turbulent Heated Jet: Concept of Entropy Generation;259
38.1;Abstract;259
38.2;1 Introduction;259
38.3;2 Problem Formulation;260
38.3.1;2.1 Governing Equations;261
38.3.2;2.2 Local Entropy Generation Rate;262
38.4;3 Boundary Conditions;262
38.5;4 Numerical Solution Method;263
38.6;5 Results and Discussion;263
38.6.1;5.1 Mean Centerline Velocity Variation;263
38.6.2;5.2 Entrainment Variation;264
38.6.3;5.3 Entropy Generation Rate Variation;265
38.7;6 Conclusion;266
38.8;References;266
39;CFD Study of a Pulverized Coal Boiler;268
39.1;Abstract;268
39.2;1 Introduction;268
39.3;2 Numerical Configuration and Boundary Conditions;269
39.4;3 Numerical Inflame Measurements;270
39.4.1;3.1 Validation;270
39.4.2;3.2 Velocity;270
39.4.3;3.3 Gas Temperature Study;270
39.4.4;3.4 Discrete Phase Trajectory Study and CO Concentration;271
39.5;4 Conclusion;274
39.6;References;274
40;Numerical Investigation of Turbulent Swirling n-Heptane Spray Ignition Behavior: Cold Flow;276
40.1;Abstract;276
40.2;1 Introduction;276
40.3;2 Numerical Configuration and Boundary Conditions;277
40.4;3 Modeling Approach;278
40.4.1;3.1 LES;278
40.4.2;3.2 Rans;279
40.5;4 Results and Discussion;279
40.6;5 Conclusion;283
40.7;References;283
41;Author Index;284




