Benamara / Haddar / Tarek | Advances in Mechanical Engineering and Mechanics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 285 Seiten

Reihe: Lecture Notes in Mechanical Engineering

Benamara / Haddar / Tarek Advances in Mechanical Engineering and Mechanics

Selected Papers from the 4th Tunisian Congress on Mechanics, CoTuMe 2018, Hammamet, Tunisia, October 13-15, 2018
1. Auflage 2019
ISBN: 978-3-030-19781-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Papers from the 4th Tunisian Congress on Mechanics, CoTuMe 2018, Hammamet, Tunisia, October 13-15, 2018

E-Book, Englisch, 285 Seiten

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-3-030-19781-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book reports on original theoretical and experimental findings related to a number of cutting-edge topics in mechanics and mechanical engineering, such as structure modelling and computation; design methodology and manufacturing processes; mechanical behaviour of materials; fluid mechanics and energy; and heat and mass transfer. It includes a selection of papers presented at the 4th Tunisian Congress on Mechanics, CoTuMe'2018, held in Hammamet, Tunisia, on October 13-15, 2018. Thanks to the good balance of theory and practical findings, it offers a timely snapshot for researchers and industrial communities alike, and a platform to facilitate communication and collaboration between the two groups.

Benamara / Haddar / Tarek Advances in Mechanical Engineering and Mechanics jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Organization;8
2.1;Editors;8
2.2;Scientific Committee;8
2.3;Organizing Committee;12
3;About this Book;13
4;Contents;14
5;Structure Modelling and Computation;17
6;Femoral Postoperative Bone Adaptation – Numerical Calculation and Clinical Validation with DEXA Investigations;18
6.1;Abstract;18
6.2;1 Introduction;18
6.3;2 Materials and Methods;21
6.3.1;2.1 Modelling;21
6.3.2;2.2 Bone Adaptation Law;23
6.3.3;2.3 DEXA Investigations;25
6.4;3 Results;26
6.5;4 Conclusion and Discussion;28
6.6;Acknowledgements;28
6.7;References;29
7;Intelligent Neural Network Control for Active Heavy Truck Suspension;31
7.1;Abstract;31
7.2;1 Introduction;31
7.3;2 Suspension Systems;32
7.4;3 Problem Formulation;33
7.5;4 Active Suspension System Schema and Model;34
7.6;5 Artificial Neural Networks (ANN);35
7.7;6 Conclusion;37
7.8;Acknowledgements;37
7.9;References;37
8;Analytical Modeling of the Tool Trajectory with Local Smoothing;39
8.1;Abstract;39
8.2;1 Introduction;39
8.3;2 Geometric Modeling of the Smoothing Element;40
8.4;3 Experimental Tests and Results;43
8.5;4 Conclusion;45
8.6;Acknowledgements;46
8.7;References;46
9;Repairing Cracked Structures Using the IF Process;47
9.1;Abstract;47
9.2;1 Introduction;47
9.3;2 FE Analysis;48
9.4;3 Results and Discussion;50
9.5;4 Conclusion;53
9.6;References;53
10;Stochastic Design of Non-linear Electromagnetic Vibration Energy Harvester;54
10.1;Abstract;54
10.2;1 Introduction;54
10.3;2 Mechanical Model;55
10.4;3 Numerical Examples;57
10.4.1;3.1 Deterministic Study;57
10.4.2;3.2 Stochastic Study;58
10.5;4 Conclusions;60
10.6;References;61
11;Mechanical Characterization of Coating Materials Based on Nanoindentation Technique;62
11.1;Abstract;62
11.2;1 Introduction;62
11.3;2 Mechanical Characterization of TiN/Zr60Ni10Cu20Al10;63
11.3.1;2.1 Experimental Details;63
11.3.2;2.2 Analytical Model;64
11.4;3 Results;65
11.4.1;3.1 Numerical Model;65
11.4.2;3.2 Numerical Confrontation;66
11.5;4 Conclusion;67
11.6;References;68
12;An Inverse Calculation of Local Elastoplastic Parameters from Instrumented Indentation Test;69
12.1;Abstract;69
12.2;1 Introduction;69
12.3;2 Numerical Study;70
12.4;3 Parameters Identification Procedure;72
12.4.1;3.1 Inverse Analysis Technique;72
12.4.2;3.2 Validation of the Proposed Procedure;73
12.5;4 Application;73
12.6;5 Conclusion;75
12.7;References;75
13;Finite Element Simulation of Single Point Incremental Forming Process of Aluminum Sheet Based on Non-associated Flow Rule;77
13.1;Abstract;77
13.2;1 Introduction;77
13.3;2 Elasto-Plastic Constitutive Equations Based on Non-associated Flow Rule;78
13.4;3 Numerical Results;80
13.5;4 Conclusion;83
13.6;References;83
14;Dispersive Waves in 2D Second Gradient Continuum Media;84
14.1;Abstract;84
14.2;1 Introduction;84
14.3;2 Homogenized Viscoelastic Second Gradient Behavior of Periodic Beam Lattice;85
14.3.1;2.1 Discrete Homogenization Method;85
14.4;3 Dynamical Equilibrium and Characteristic Equation;87
14.5;4 Dispersion Relations and Damping Ratio Evolutions;88
14.6;5 Conclusion;90
14.7;References;91
15;Piezoelastic Behavior of Adaptive Composite Plate with Integrated Sensors and Actuators;92
15.1;Abstract;92
15.2;1 Introduction;92
15.3;2 Theoretical Formulations;93
15.3.1;2.1 Kinematic Assumptions;94
15.3.2;2.2 Weak Form and Finite Element Approximation;94
15.4;3 Numerical Results;96
15.5;4 Conclusion;98
15.6;References;98
16;Design Methodology and Manufacturing Process;100
17;Cycle Time and Hole Quality in Drilling Canned Cycle;101
17.1;Abstract;101
17.2;1 Introduction;101
17.3;2 Feed Rate Modelling;102
17.3.1;2.1 Tool Path and Specific Parameters in Drilling Cycle;102
17.3.2;2.2 Feed Rate Modeling for Linear Interpolation;102
17.4;3 Modeling of Drilling Cycle Time;103
17.4.1;3.1 Cycle Time tc;104
17.4.2;3.2 Cutting Time tu;104
17.5;4 Results and Discussions;104
17.5.1;4.1 Experimental Work;104
17.5.2;4.2 Drilling Cycle Time;105
17.5.3;4.3 Drilling Quality;107
17.6;5 Conclusion;108
17.7;Acknowledgements;108
17.8;References;108
18;DMST Investigation of the Effect of Cambered Blade Curvature on Small H-Darrieus Rotor Performance;109
18.1;Abstract;109
18.2;1 State-of-the-Art of Wind Turbine Rotor Design;109
18.3;2 QBlade Simulation Tool;110
18.4;3 DMST Model Validation;110
18.5;4 Results and Discussion;111
18.5.1;4.1 Effect of Pitch Angle;111
18.5.2;4.2 Effect of Aspect Ratio (AR);112
18.5.3;4.3 Effect of Freestream Velocity;112
18.5.4;4.4 Effect of Solidity;113
18.5.5;4.5 Effect of Variable Chord Length;113
18.6;5 Conclusion;115
18.7;6 Future Work;115
18.8;References;116
19;A New CAD-CAM Approach Using Interacting Features for Incremental Forming Process;117
19.1;Abstract;117
19.2;1 Introduction;117
19.3;2 SPIF Process;118
19.4;3 API-CATIA Implementation;119
19.5;4 Development of the Proposed CAD System;120
19.5.1;4.1 Case Study;123
19.6;5 Conclusion;124
19.7;Acknowledgements;124
19.8;References;124
20;A Novel Approach for Robust Design of Sewing Machine;126
20.1;Abstract;126
20.2;1 Introduction;126
20.3;2 Modeling of the Motor Driven NBTTL System;127
20.3.1;2.1 The NBTTL Mechanism;127
20.3.2;2.2 The Mechatronic Model of the Motor Driven NBTTL System;128
20.4;3 Robust Design of the Motor Driven NBTTL System;129
20.5;4 Results and Discussion;130
20.6;5 Conclusion;132
20.7;Appendix;133
20.8;References;133
21;Meshfree Analysis of 3-D Double Directors Shell Theory;134
21.1;Abstract;134
21.2;1 Introduction;134
21.3;2 Kinematics of Double Directors Shell Model;135
21.3.1;2.1 Displacement Field and Strains of the Shell Model;135
21.3.2;2.2 The Weak Form;136
21.3.3;2.3 Meshfree Approximation of High Order Shear Deformation Theory Considering the RPIM;137
21.4;3 Numerical Results and Discussions;138
21.5;4 Conclusion;140
21.6;References;140
22;Application of Artificial Intelligence to Predict Circularity and Cylindricity Tolerances of Holes Drilled on Marble;142
22.1;Abstract;142
22.2;1 Introduction;142
22.3;2 Experimental Study;143
22.4;3 Model of the Proposed ANN;144
22.5;4 Conclusion;147
22.6;Acknowledgements;147
22.7;References;147
23;Experimental Effect of Cutting Parameters and Tool Geometry in Drilling Woven CFRP;149
23.1;Abstract;149
23.2;1 Introduction;149
23.3;2 Experimental Work;150
23.3.1;2.1 Workpiece Material and Drills;150
23.3.2;2.2 Machining Tests;151
23.4;3 Results and Discussion;152
23.4.1;3.1 Thrust Force;152
23.4.2;3.2 Surface Quality;153
23.5;4 Conclusion;155
23.6;Acknowledgements;155
23.7;References;156
23.8;Journal article;156
23.9;Journal article only by DOI;156
23.10;Online document;156
24;Effects of the Tool Bending on the Cutting Force in Ball End Milling;157
24.1;Abstract;157
24.2;1 Introduction;157
24.3;2 Geometry of the Tool;158
24.4;3 Effect of the Bending on the Tool Geometry;159
24.5;4 Thermomechanical Cutting Force Modeling;160
24.6;5 Experimental Work;161
24.7;6 Results and Discussion;162
24.7.1;6.1 Cutting Force Results;162
24.7.2;6.2 Tool Radius;162
24.8;7 Conclusion;164
24.9;Acknowledgments;164
24.10;References;165
25;Influence of the Nose Radius on the Cutting Forces During Turning;166
25.1;Abstract;166
25.2;1 Introduction;166
25.3;2 Tool Geometry Modeling;167
25.4;3 Cutting Forces Modeling;169
25.5;4 Results and Discussion;170
25.6;5 Conclusion;172
25.7;Acknowledgments;172
25.8;References;172
26;Effect of the Interpolator Properties During the Multi-Point Hydroforming Process (MPHF);174
26.1;Abstract;174
26.2;1 Introduction;174
26.3;2 Description of the Experimental Set Up, Materials and Finite Element Model;175
26.4;3 Results and Discussion;177
26.4.1;3.1 The Effect of the Pins Geometry and Density of the Final Product Quality;177
26.4.2;3.2 The Effect of an Interpolator and a Cover Sheet Insertion;179
26.5;4 Conclusion;180
26.6;Acknowledgements;180
26.7;References;180
27;Materials: Mechanical Behaviour and Structure;181
28;Probabilistic Fatigue Life Prediction of Parabolic Leaf Spring Based on Latin Hypercube Simulation Method;182
28.1;Abstract;182
28.2;1 Introduction;182
28.3;2 Materials and Methods;183
28.4;3 Results and Discussion;185
28.5;4 Conclusion;188
28.6;References;188
29;The Relation Between R Phase Presence Level and Stress-Temperature Diagram of an Aged NiTi Shape Memory Alloy;190
29.1;Abstract;190
29.2;1 Introduction;190
29.3;2 Material and Experimental Method;191
29.3.1;2.1 Thermal Analysis;191
29.3.2;2.2 Microstructural Analysis;192
29.3.3;2.3 Mechanical Analysis;192
29.4;3 Results and Discussion;192
29.4.1;3.1 DSC Analysis;192
29.4.2;3.2 XRD Analysis;194
29.4.3;3.3 Compression Tests and Stress-Temperature Diagram;195
29.5;4 Conclusion;196
29.6;References;197
30;FTIR Spectroscopy Characterization and Numerical Simulation of Cyclic Loading of Carbon Black Filled SBR;199
30.1;Abstract;199
30.2;1 Introduction;199
30.3;2 Experimental;200
30.3.1;2.1 Sample Geometry and Materials;200
30.3.2;2.2 Mechanical Fatigue Characterization;200
30.3.3;2.3 Fourier Transform Infrared Characterization;201
30.4;3 Results and Discussion;202
30.4.1;3.1 Fillers Softening Effects;202
30.4.2;3.2 Fillers Microstructural Effects;203
30.4.2.1;3.2.1 ATR-IR Analysis;203
30.4.2.2;3.2.2 Molecular Network Kinetic;203
30.4.2.3;3.2.3 Numerical Simulation Results;205
30.5;4 Conclusion;206
30.6;Acknowledgement;206
30.7;References;206
31;Shear Bands Behavior in Notched Cu60Zr30Ti10 Metallic Glass;208
31.1;Abstract;208
31.2;1 Introduction;208
31.3;2 Experimental Procedure;209
31.4;3 Results and Discussions;210
31.4.1;3.1 Experimental Results;210
31.4.2;3.2 Numerical Results;211
31.4.2.1;3.2.1 Constitutive Model;211
31.4.2.2;3.2.2 Geometrical Model;212
31.4.2.3;3.2.3 Results;213
31.5;4 Conclusion;215
31.6;References;215
32;Analytical Study of Curvature Radius Effect on the Bending Stress and Fatigue Life of Parabolic Leaf Spring;217
32.1;Abstract;217
32.2;1 Introduction;217
32.3;2 Analytical Approach;218
32.4;3 FEM Approach;221
32.5;4 Fatigue Life Prediction;221
32.6;5 Results and Discussion;222
32.7;6 Conclusion;224
32.8;References;224
33;Improvement of the Predictive Ability of Polycyclic Fatigue Criteria for 42CrMo4 Nitrided Steels;225
33.1;Abstract;225
33.2;1 Introduction;225
33.3;2 Material, Treatment and Experimental Procedure;226
33.4;3 Numerical Procedure of Relaxed Residual Stress Determination;226
33.4.1;3.1 Numerical Procedure;226
33.4.2;3.2 Geometry, Mesh, Loading and Boundary Conditions;227
33.4.3;3.3 Cyclic Hardening Model for the Base Material;228
33.4.4;3.4 Application of SINES Criterion;229
33.5;4 Finite Elements Analysis Results and Discussion;230
33.6;5 Conclusion;231
33.7;References;232
34;Analysis of Surfaces Characteristics Stability in Grinding Process;234
34.1;Abstract;234
34.2;1 Introduction;234
34.3;2 Experiments;235
34.3.1;2.1 Material;235
34.3.2;2.2 Experimental Setup;235
34.3.3;2.3 Examination of Grinding Wheel Surface;236
34.3.3.1;2.3.1 Evaluation of Cutting-Edge Density and Spatial Distribution;237
34.3.4;2.4 Evaluation of Workpiece Characteristics;237
34.3.4.1;2.4.1 Effect on the Stability of the Roughness Indicators;237
34.3.4.2;2.4.2 Effect on the Stability of the Microhardness Distribution;238
34.4;3 Conclusion;239
34.5;References;239
35;Fluid Mechanics and Energy, Mass and Heat Transfer;241
36;Numerical Modelling of Cavitating Flows in Venturi;242
36.1;Abstract;242
36.2;1 Introduction;242
36.3;2 Mathematical and Numerical Model;243
36.3.1;2.1 Governing Equations;243
36.3.2;2.2 Mass Transfer Models;244
36.3.2.1;2.2.1 Kunz Model;244
36.3.3;2.3 Turbulence Models;244
36.4;3 Results and Discussions;244
36.4.1;3.1 Test Case: Geometry Venturi 8°;244
36.4.2;3.2 Computation Domain and Mesh Generation;245
36.4.2.1;3.2.1 Meshing;245
36.4.2.2;3.2.2 Open Foam: InterPhaseChangeFoam;245
36.4.2.3;3.2.3 Boundary and Operation Conditions;245
36.4.3;3.3 Study 2D: Global Validation;246
36.4.3.1;3.3.1 K-? RNG Model;246
36.4.3.2;3.3.2 K-? SST Model;246
36.4.3.3;3.3.3 Modified RNG K-? Model;247
36.5;4 Conclusions;249
36.6;References;249
37;Numerical Simulation of a Water Jet Impacting a Titanium Target;250
37.1;Abstract;250
37.2;1 Introduction;250
37.3;2 Problem Formulation;251
37.4;3 Numerical Models;252
37.4.1;3.1 Material Modeling;252
37.4.2;3.2 Mesh and Conversion to Particles;253
37.4.3;3.3 Boundary Conditions and Predefined Field;253
37.5;4 Numerical Results;253
37.5.1;4.1 Pressure on the Target;254
37.6;5 Comparison Between the Inclined Target and the Horizontal Target;256
37.7;6 Conclusions;257
37.8;References;258
38;Effect of Co-flow Stream on a Plane Turbulent Heated Jet: Concept of Entropy Generation;259
38.1;Abstract;259
38.2;1 Introduction;259
38.3;2 Problem Formulation;260
38.3.1;2.1 Governing Equations;261
38.3.2;2.2 Local Entropy Generation Rate;262
38.4;3 Boundary Conditions;262
38.5;4 Numerical Solution Method;263
38.6;5 Results and Discussion;263
38.6.1;5.1 Mean Centerline Velocity Variation;263
38.6.2;5.2 Entrainment Variation;264
38.6.3;5.3 Entropy Generation Rate Variation;265
38.7;6 Conclusion;266
38.8;References;266
39;CFD Study of a Pulverized Coal Boiler;268
39.1;Abstract;268
39.2;1 Introduction;268
39.3;2 Numerical Configuration and Boundary Conditions;269
39.4;3 Numerical Inflame Measurements;270
39.4.1;3.1 Validation;270
39.4.2;3.2 Velocity;270
39.4.3;3.3 Gas Temperature Study;270
39.4.4;3.4 Discrete Phase Trajectory Study and CO Concentration;271
39.5;4 Conclusion;274
39.6;References;274
40;Numerical Investigation of Turbulent Swirling n-Heptane Spray Ignition Behavior: Cold Flow;276
40.1;Abstract;276
40.2;1 Introduction;276
40.3;2 Numerical Configuration and Boundary Conditions;277
40.4;3 Modeling Approach;278
40.4.1;3.1 LES;278
40.4.2;3.2 Rans;279
40.5;4 Results and Discussion;279
40.6;5 Conclusion;283
40.7;References;283
41;Author Index;284



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.