Buch, Englisch, 187 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 312 g
Techniques, Toolboxes and Applications
Buch, Englisch, 187 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 312 g
Reihe: Unsupervised and Semi-Supervised Learning
ISBN: 978-3-030-07419-7
Verlag: Springer International Publishing
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
Introduction.- Clustering large scale data.- Clustering heterogeneous data.- Distributed clustering methods.- Clustering structured and unstructured data.- Clustering and unsupervised learning for deep learning.- Deep learning methods for clustering.- Clustering high speed cloud, grid, and streaming data.- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis.- Large documents and textual data clustering.- Applications of big data clustering methods.- Clustering multimedia and multi-structured data.- Large-scale recommendation systems and social media systems.- Clustering multimedia and multi-structured data.- Real life applications of big data clustering.- Validation measures for big data clustering methods.- Conclusion.