Beik / Al-Adsani | DC Wind Generation Systems | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 192 Seiten

Beik / Al-Adsani DC Wind Generation Systems

Design, Analysis, and Multiphase Turbine Technology
1. Auflage 2020
ISBN: 978-3-030-39346-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Design, Analysis, and Multiphase Turbine Technology

E-Book, Englisch, 192 Seiten

ISBN: 978-3-030-39346-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents the design and operation of DC wind systems and their integration into power grids. The chapters give an in-depth discussion on turbine conversion systems that have been adapted for DC grids and address characteristics of wind turbines when converting kinetic wind energy to electrical energy, components associated with DC systems, and the design and analysis of DC grids. Additionally, the performance of medium voltage DC (MVDC) array grid and high voltage DC (HVDC) transmission grid connected via an offshore substation with DC/DC converters are also addressed. The book examines multiphase hybrid excitation generator systems for wind turbines and discusses its design and operation for all DC systems. The book provides an insight into the state-of-the-art technological advancements for existing and futuristic wind generation schemes, and provides materials that will allow students, researchers, academics, and practicing engineers to learn, expand and complement their expertise.


Omid Beik received the B.Sc. degree (Hons. with highest distinction) in electrical engineering from Yazd University, Yazd, Iran, in 2007, the M.Sc. degree (with highest distinction) in electrical engineering from Shahid Beheshti University, Abbaspour School of Engineering, Tehran, Iran, in 2009, and the Ph.D. degree in electrical engineering from McMaster University, Hamilton, ON, Canada, in 2016. He was a Postgraduate Researcher with the Power Conversion Group, University of Manchester, U.K. from 2011 to 2012, and a Postdoctoral Research Fellow with McMaster University, Hamilton, ON, Canada from 2016 to 2017. His main research interests include electric machines, and drives and power electronics for applications in renewable energy systems and transportation electrification. Ahmad Saad Al-Adsani received the B.S. (Hons.) degree in electrical power engineering from Gannon University, Erie, PA, USA, in 1996, the M.S. degree in electrical power engineering from the South Dakota School of Mines and Technology, Rapid City, SD, USA, in 2001, and the Ph.D. degree from the University of Manchester, Manchester, U.K., in 2011. From 1997 to 1999, he was an Instructor with Public Authority for Applied Education and Training (PAAET), Kuwait City, Kuwait, before joining the Electrical Engineering Department, as an Assistant Lecturer, with the College of Technological Studies (CST) from 2001 to 2007. He was also the Head of the Electrical Unit, College of Basic Education, PAAET from 2003 to 2007. He is currently an Assistant Professor with the CST, PAAET. His research interests include electro-magnetic powertrains for electric and hybrid-electric vehicles, design and control of multiphase electric and hybrid electric machines for renewable energy applications.    

Beik / Al-Adsani DC Wind Generation Systems jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Chapter 1: Wind Energy Systems;10
3.1;1.1 Introduction;10
3.2;1.2 Developments in the Wind Generation Systems;12
4;Chapter 2: Wind Turbine Systems;19
4.1;2.1 Introduction;19
4.2;2.2 Wind Turbine Power and the Betz Limit;19
4.3;2.3 Wind Turbine Power Coefficient;24
4.3.1;2.3.1 Tip Speed Ratio;24
4.3.2;2.3.2 Mathematical Expression for Wind Turbine Power Coefficient;26
4.4;2.4 Wind Turbine Operation;28
4.4.1;2.4.1 Limited Speed Operation;32
4.4.2;2.4.2 High Speed Operation;37
5;Chapter 3: DC Wind Generation System;40
5.1;3.1 Overview of the Walney Offshore Wind Farm;40
5.2;3.2 Walney System Component Model;43
5.2.1;3.2.1 Induction Generator (IG) Model;44
5.2.2;3.2.2 VSC Model;45
5.2.3;3.2.3 Transformer Model;46
5.2.4;3.2.4 AC Cables Model;46
5.2.5;3.2.5 DC-Link Model;47
5.3;3.3 Walney System Analysis at Different Loads;49
5.3.1;3.3.1 Full-Load Results;50
5.3.2;3.3.2 Results for Three-Quarter, Half-, and One-Quarter Loads;53
5.4;3.4 DC Offshore Wind Generation System;57
5.4.1;3.4.1 Hybrid Generator (HG);59
5.4.2;3.4.2 Gearbox;61
5.4.3;3.4.3 Voltage Control Scenarios;61
5.4.4;3.4.4 DC/DC Converter;63
5.4.5;3.4.5 Turbine Safety Considerations;64
5.5;3.5 DC System Analysis;64
5.5.1;3.5.1 DC Cable Calculations;66
5.5.2;3.5.2 Results for Full-, Three-Quarter, Half-, and One-Quarter Loads;68
5.6;3.6 Comparison Between DC System and Walney Wind Farm;74
5.7;3.7 Summary;75
6;Chapter 4: Hybrid Generator (HG) Concept;77
6.1;4.1 Electric Machines and Converters for Wind Turbines;77
6.1.1;4.1.1 Doubly Fed Induction Generators (DFIGs);77
6.1.2;4.1.2 VSC-Coupled Induction, Synchronous, and PM Generators;77
6.1.3;4.1.3 Comparison of Generators;81
6.2;4.2 Hybrid Generator (HG) Concept;82
6.3;4.3 High-Voltage, Three-Phase Benchmark Synchronous Generator (SG);83
6.3.1;4.3.1 General Details;83
6.3.2;4.3.2 Winding Arrangement;86
6.3.3;4.3.3 Magnetic Field Distribution and Flux-Density;88
6.3.4;4.3.4 Flux-Linkage and Back-EMF;91
6.3.5;4.3.5 Torque Calculations;94
6.3.6;4.3.6 Inductances;96
6.3.7;4.3.7 Modeling of Benchmark SG;100
6.4;4.4 Summary;103
7;Chapter 5: Multiphase Machine Design;104
7.1;5.1 Introduction;104
7.2;5.2 HG Design Philosophies;104
7.2.1;5.2.1 HG Design Philosophy for Limited Speed Region;105
7.3;5.3 Design of Three-Phase HG with 100% Wound Field (WF);107
7.3.1;5.3.1 Generator Connected to a Passive Rectifier;107
7.3.2;5.3.2 Generator Connected to a VSC;109
7.4;5.4 Design of 9-Phase HG with 100% Wound Field (WF);116
7.4.1;5.4.1 Comparison of 3-Phase and 9-Phase Machines;121
7.4.2;5.4.2 Generator Connected to a Passive Rectifier;123
7.5;5.5 Design of HG PM Rotor with NdFeB Surface Magnets;126
7.5.1;5.5.1 Sintered NdFeB Characteristics;128
7.5.2;5.5.2 Flux-Linkage, Back-EMF, and Torque;133
7.5.3;5.5.3 Inductances;135
7.6;5.6 Design of HG PM Rotor with Ferrite-Embedded Magnets;137
7.7;5.7 Design of HG PM Rotor with NdFeB-Embedded Magnets;141
7.7.1;5.7.1 Flux-Linkage, Back-EMF, and Torque;143
7.7.2;5.7.2 Inductances;147
7.8;5.8 Final HG Considerations;148
7.8.1;5.8.1 WF and PM Split Ratio;150
7.8.2;5.8.2 HG Loss Audit;153
7.9;5.9 Summary;158
8;Chapter 6: High Voltage Insulation Systems;160
8.1;6.1 Introduction;160
8.2;6.2 Analysis of the HV System Employing a 6.35 kV HG;161
8.3;6.3 HV Winding Types;163
8.4;6.4 Insulation Systems;165
8.4.1;6.4.1 Strand, Turn, and Groundwall Insulation;167
8.4.2;6.4.2 Semiconductive Slot and Voltage Stress Grading Insulation;172
8.4.3;6.4.3 Transposition;174
8.5;6.5 HG Insulation;175
8.6;6.6 Summary;180
9;References;182
9.1;References for Further Studies;186
10;Index;189



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.