E-Book, Englisch, Band 25, 532 Seiten
Reihe: Advances in Natural and Technological Hazards Research
Begum / Stive / Hall Flood Risk Management in Europe
1. Auflage 2007
ISBN: 978-1-4020-4200-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Innovation in Policy and Practice
E-Book, Englisch, Band 25, 532 Seiten
Reihe: Advances in Natural and Technological Hazards Research
ISBN: 978-1-4020-4200-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
This valuable edition brings together 25 peer reviewed articles on technical, socio-economic, environmental and policy aspects of flood risk management. Some emerging technologies are presented and several future challenges are identified. Thus the book forms an excellent reference for the engineers, scientists, planners, policy-makers, researchers, insurance industry and all the practitioners involved in flood risk management.
Autoren/Hrsg.
Weitere Infos & Material
1;978-1-4020-4200-3_BookFrontmatter_OnlinePDF.pdf;2
2;978-1-4020-4200-3_1_OnlinePDF.pdf;16
2.1;SECTIONI Flood Risk Management Practice;16
2.1.1;Decision-Making for Flood-Threatened Properties;17
2.1.1.1;I. Kelman;17
2.1.1.1.1;Introduction;17
2.1.1.1.2;To Seal Or Not To Seal?;19
2.1.1.1.3;Other Analytical Strategies for Individual Properties;25
2.1.1.1.4;The Community Context;29
2.1.1.1.5;Conclusions;31
3;978-1-4020-4200-3_2_OnlinePDF.pdf;34
3.1;The Influence of Floodplain Compartmentalization on Flood Risk Within the Rhine-Meuse Delta;34
3.1.1;D. Alkema and H. Middelkoop;34
3.1.1.1;Introduction;34
3.1.1.2;Historic Background;36
3.1.1.3;Inundation Scenarios;38
3.1.1.3.1;Dike Failures;38
3.1.1.3.2;Spill-Overs;38
3.1.1.3.3;Breaches;39
3.1.1.3.4;Topography;39
3.1.1.4;The 2D-Flood Propagation Model Delft-FLS;42
3.1.1.4.1;Data Requirements;43
3.1.1.4.2;Model Output;43
3.1.1.4.3;Model Sensitivity;43
3.1.1.5;Boundary Conditions and Model Calibration;44
3.1.1.5.1;River Discharge;44
3.1.1.5.2;Stage Discharge Relations Waal and Meuse;44
3.1.1.5.3;Surface Roughness Coefficients;45
3.1.1.5.4;Model Calibration;45
3.1.1.6;Flood Hazard Assessment;46
3.1.1.7;Flood Damage Estimation;51
3.1.1.7.1;Multi-Parameter Flood Hazard Estimation -- An Example;51
3.1.1.8;Results and Conclusions;53
4;978-1-4020-4200-3_3_OnlinePDF.pdf;56
4.1;Osiris -- an Example of Citizen-Oriented Technology Development in the area of Dissemination of Information on Flood Risk Management;56
4.1.1;M. Erlich;56
4.1.1.1;Introduction;56
4.1.1.2;The Osiris Context of the Flood Risk Management;57
4.1.1.3;The Experience of Osiris;58
4.1.1.3.1;Objectives of the Project;58
4.1.1.3.2;Methodological Approach;59
4.1.1.3.3;Results of OSIRIS;61
4.1.1.3.4;OSIRIS Demonstrators and Lessons Learned;62
4.1.1.4;Potential Services for Flood RiskManagemeNT;69
4.1.1.4.1;Information Dissemination Services;69
4.1.1.4.2;Services Related to Education;70
4.1.1.5;Validation Process;71
4.1.1.6;Concluding Remarks -- Towards Further Deployment of the Osiris Results -- Challenges for the Future;72
5;978-1-4020-4200-3_4_OnlinePDF.pdf;74
5.1;Evolving Concepts in Flood Risk Management: Searching for a Common Language;74
5.1.1;K. De Bruijn, C. Green, C. Johnson and L. m1cfadden;74
5.1.1.1;Introduction;74
5.1.1.2;Flood Risk Management: an Integrated Approach to Coping With Floods;75
5.1.1.3;Defining Resilience for Frm;77
5.1.1.4;Natural Hazards and Vulnerability;80
5.1.1.5;The Role of Uncertainty in Flood Risk Management;81
5.1.1.6;Relationships Between Concepts;84
5.1.1.7;Conclusion;86
6;978-1-4020-4200-3_5_OnlinePDF.pdf;89
6.1;Comrisk -- A transnational project of public authorities on coastal risk management;89
6.1.1;J.L.A. HOFSTEDE;89
6.1.1.1;Introduction;89
6.1.1.2;The Project;91
6.1.1.3;Subproject 1 -- Policies and Strategies;92
6.1.1.4;Subproject 3 -- Public Perception and Participation;95
6.1.1.5;Discussion and Outlook;98
7;978-1-4020-4200-3_6_OnlinePDF.pdf;101
7.1;Dike Investigations Using Geophysical Methods -- Techniques for the Future?;101
7.1.1;R. Morawetz, J. SchöN, C. Wohlfahrt and M. Röck;101
7.1.1.1;Introduction;101
7.1.1.2;Description of Methods Tested;104
7.1.1.2.1;Overview;104
7.1.1.2.2;Methods;104
7.1.1.3;Results of Test Measurements -- Case A;106
7.1.1.3.1;Pilot Site St. Dionysen;106
7.1.1.3.2;Pilot Site Spielfeld/Stra"019;107
7.1.1.4;Results of Test Measurements -- Case B;110
7.1.1.4.1;Pilot Site Lobau;110
7.1.1.5;Conclusions, Benefits and Limitations;114
8;978-1-4020-4200-3_7_OnlinePDF.pdf;116
8.1;SECTIONII Flood Events and Impacts;116
8.1.1;The Environmental Impact of Flooding of The Dutch `Delta-Metropole';117
8.1.1.1;L.C.P.M. Stuyt, J.E.A. Reinders, E.E. Van Der Hoek, E.G.M. Hermans, M. De Muinck KeizeR, and J. Icke;117
8.1.1.1.1;Introduction;117
8.1.1.1.2;The `Krimpen' Case Study;118
8.1.1.1.2.1;The Hydrodynamic Sobek Model `Delft1D-2D';119
8.1.1.1.2.2;The Water Quality Module `Delwaq';121
8.1.1.1.2.3;The `ERA' Sediment Transport Model;122
8.1.1.1.2.4;Compounds and Physical Mechanisms;123
8.1.1.1.2.5;Locations and Quantities of Pollutants;123
8.1.1.1.2.6;Release of Pollutants into the Environment;125
8.1.1.1.3;Results;127
8.1.1.1.3.1;Suspended Particles;127
8.1.1.1.3.2;Mono-Aromatics;127
8.1.1.1.3.3;PAHs;129
8.1.1.1.3.4;Alkanes and Alkenes;130
8.1.1.1.3.5;DNAPLs;132
8.1.1.1.3.6;Pesticides and Herbicides;132
8.1.1.1.3.7;Heavy Metals;133
8.1.1.1.4;Assessment of Damage From the Environmental Impacts;134
8.1.1.1.4.1;Clean-up Costs;135
8.1.1.1.4.2;Damage in Agriculture;136
8.1.1.1.5;Conclusions;137
9;978-1-4020-4200-3_8_OnlinePDF.pdf;140
9.1;Structural Economic Effects of Large-Scale Inundation;140
9.1.1;M. BoCkarjova, A.E. Steenge and A. Van Der Veen;140
9.1.1.1;Introduction;140
9.1.1.2;Damage;142
9.1.1.2.1;Basic Concepts for Damage Estimation;142
9.1.1.2.2;Indirect Effects in an Economy;144
9.1.1.2.3;Damage: Towards a Consistent Set of Definitions for Direct and Indirect Costs;145
9.1.1.2.4;Input-Output Analysis;145
9.1.1.3;Consequences of a Shock to an Economy: Business Disruption;146
9.1.1.3.1;Asymmetric Shock;147
9.1.1.3.2;Production `Bottlenecks';147
9.1.1.3.3;Lifeline System;148
9.1.1.3.4;Substitution Effect;149
9.1.1.3.5;Other Factors;149
9.1.1.4;The Case of Krimpen: Calculations;150
9.1.1.4.1;The Data;150
9.1.1.4.2;Direct Damage Estimation;152
9.1.1.4.3;Indirect Economic Effects;152
9.1.1.4.4;Discussion of Results;156
9.1.1.5;Conclusions;158
10;978-1-4020-4200-3_9_OnlinePDF.pdf;164
10.1;A Method to Estimate Loss of Life Caused by Large-Scale Floods in the Netherlands;164
10.1.1;N.E.M. Asselman and S.N. Jonkman;164
10.1.1.1;Introduction;164
10.1.1.2;Development of a loss of life model in GIS;165
10.1.1.2.1;Introduction;165
10.1.1.2.2;Evacuation;165
10.1.1.2.3;Relationship Between Flooding Characteristics and Loss of Life;167
10.1.1.2.4;Model Framework;170
10.1.1.3;Case studies;170
10.1.1.3.1;Study Area;170
10.1.1.3.2;Hydraulic simulations;171
10.1.1.3.3;Results;172
10.1.1.3.4;Discussion;175
10.1.1.4;Conclusions;178
11;978-1-4020-4200-3_10_OnlinePDF.pdf;180
11.1;Automation Of Flood Contingency Plans;180
11.1.1;J.J. Flikweert, C. Coremans, K. De Gooijer, and L. Wentholt;180
11.1.1.1;Introduction;181
11.1.1.2;Information Management During Flood Threat Situations;181
11.1.1.2.1;The Dutch Flood Defence System;181
11.1.1.2.2;Dike Rings;181
11.1.1.2.3;Tasks in Flood Threat Situations;182
11.1.1.2.4;Emergency Organisation of the Water Boards;182
11.1.1.2.5;Operational Team and Policy Team;182
11.1.1.2.6;Tasks of the Operational Team;182
11.1.1.2.7;Tools of the Operational Team;183
11.1.1.2.8;Need for Improved Information Management Tools;183
11.1.1.3;Properties And Functionalities Of Gdh;183
11.1.1.3.1;General Use of the Programme;184
11.1.1.3.2;Off-Line Mode;184
11.1.1.3.3;On-Line Mode;184
11.1.1.3.4;Post Event Use;186
11.1.1.4;Automation: Benefits And Threats;187
11.1.1.4.1;Error Reduction;187
11.1.1.4.2;Improved Understanding;187
11.1.1.4.3;Improved Efficiency;188
11.1.1.4.4;Clear Hierarchy and Decision Structure;188
11.1.1.5;Development Process;189
11.1.1.5.1;Initiative;189
11.1.1.5.2;Preliminary Study;189
11.1.1.5.3;Functional Specifications;190
11.1.1.5.4;Technical Design;191
11.1.1.5.5;Construction;191
11.1.1.5.6;Testing;191
11.1.1.5.7;Following Cycles;192
11.1.1.6;Implementation Experiences;192
11.1.1.6.1;Functional Implementation;192
11.1.1.6.2;Technical Implementation;194
11.1.1.6.3;Organisational Implementation;194
11.1.1.7;Further Development;194
11.1.1.7.1;Improvement of Current Application;195
11.1.1.7.2;Interreg Funding;195
11.1.1.7.3;Other Emergency Types;195
11.1.1.8;Conclusions;196
12;978-1-4020-4200-3_11_OnlinePDF.pdf;197
12.1;SECTIONIII Flood Analysis and Modelling;197
12.1.1;The Impact European Research Project on Flood Propagation in Urban Areas: Experimental and Numerical Modelling of the Influence of Buildings on the Flow;198
12.1.1.1;S. Soares Frazão, F. Alcrudo, J. Mulet, B. Noël, G. Testa, and Y. Zech;198
12.1.1.1.1;Introduction;198
12.1.1.1.2;Severe Floods in Urban Areas;199
12.1.1.1.3;Experimental Work;201
12.1.1.1.3.1;The Isolated-Building Experiment;202
12.1.1.1.3.2;The Model City Flooding Experiment;204
12.1.1.1.4;Modelling Work;209
12.1.1.1.4.1;Numerical Strategy;210
12.1.1.1.4.2;Adopted Techniques for Urban Flooding;211
12.1.1.1.4.3;The Isolated Building Test Case Results;212
12.1.1.1.4.4;The Model City Flooding Experiment Test Case Results;213
12.1.1.1.5;Conclusion;217
13;978-1-4020-4200-3_12_OnlinePDF.pdf;219
13.1;Sustainable Development and Flood Risk -- Reducing Uncertainty (Bristol City Re-Development Case Study);219
13.1.1;M. Pinnell;219
13.1.1.1;Introduction;220
13.1.1.2;Flood Mapping in England and Wales;221
13.1.1.3;Bristol Broadmead Case Study;222
13.1.1.4;Broadmead Development;225
13.1.1.5;Data Collection;226
13.1.1.6;Hydraulic Modelling;230
13.1.1.7;Conclusions;234
14;978-1-4020-4200-3_13_OnlinePDF.pdf;236
14.1;Flood Risk Mapping At The Local Scale: Concepts And Challenges;236
14.1.1;B. Merz, A.H. Thieken, and M. Gocht;236
14.1.1.1;Introduction;236
14.1.1.2;Flood Risk -- Definitions and Indicators;240
14.1.1.2.1;Flood Hazard;240
14.1.1.2.2;Flood Vulnerability;241
14.1.1.2.3;Flood Risk;243
14.1.1.3;Proposal for Systematic Flood Mapping;244
14.1.1.3.1;Flood Hazard Mapping;244
14.1.1.3.2;Flood Vulnerability Mapping;245
14.1.1.3.3;Flood Risk Mapping;247
14.1.1.4;Discussion;248
14.1.1.4.1;Efforts for Developing and Updating Flood Maps;248
14.1.1.4.2;Reliability;250
14.1.1.4.3;Use of Flood Maps;251
14.1.1.5;Challenges;252
14.1.1.5.1;Vulnerability and Risk Mapping;252
14.1.1.5.2;Dynamic Flood Mapping;253
14.1.1.5.3;End-User Involvement;253
14.1.1.5.4;Cross-Border Flood Mapping;253
14.1.1.5.5;Real-Time Flood Mapping;254
15;978-1-4020-4200-3_14_OnlinePDF.pdf;257
15.1;Flood Modelling and the August 2002 Flood in the Czech Republic;257
15.1.1;P. Sklenár, E. Zeman, J. ŠPatka and P. TachecÍ;257
15.1.1.1;Introduction -- The General Situation;257
15.1.1.2;Flood 8/2002 -- Situation;259
15.1.1.3;Prague Flood Model;261
15.1.1.3.1;The Very Beginnings;261
15.1.1.3.2;1D Phase -- The Comprehensive Study 1994--1997;265
15.1.1.3.3;2D Flood Model 2000--2001;268
15.1.1.3.4;2D Prague Flood Model 2003 -- Update after 8/2002 Flood Event;271
15.1.1.3.5;Practical Application of the Re-Calibrated 2D Model;272
15.1.1.4;Flood Protection -- Structural Measures;275
15.1.1.4.1;Example of Structural Mitigation Effort in Prague on the Vltava River;276
15.1.1.5;Non-Structural Measures;276
15.1.1.6;Conclusions;277
16;978-1-4020-4200-3_15_OnlinePDF.pdf;279
16.1;Seasonal Rainfall and Flow Trends Within Three Catchments in South-West England;279
16.1.1;D. Han;279
16.1.1.1;Introduction;279
16.1.1.2;Catchments;282
16.1.1.3;Trends of Rainfall and Flow;284
16.1.1.3.1;Seasonal Trends of Rainfall;285
16.1.1.3.2;Seasonal Trends of Mean Flow;285
16.1.1.3.3;Seasonal Trends of Peak Flow;285
16.1.1.3.4;Trends of Return Period of Annual Maximum Flow;288
16.1.1.3.5;Evaluating the Goodness of Fit;288
16.1.1.4;Discussion and Conclusions;292
17;978-1-4020-4200-3_16_OnlinePDF.pdf;297
17.1;Propagation of Discharge Uncertainty in a Flood Damage Model For the Meuse River;297
17.1.1;Y.P. Xu, M.J. Booij, and A.E. Mynett,;297
17.1.1.1;Introduction;297
17.1.1.2;Flood Damage and Uncertainty;299
17.1.1.2.1;Flood Frequency Analysis;299
17.1.1.2.2;Expected Annual Damage (EAD);301
17.1.1.2.3;Propagation of Uncertainty;302
17.1.1.3;Case Study;303
17.1.1.3.1;The Meuse River;303
17.1.1.3.2;Data Used;303
17.1.1.4;Model Results and Discussion;306
17.1.1.4.1;Uncertainty Analysis of T-year Event Discharges;306
17.1.1.4.2;Uncertainty in Damage;309
17.1.1.4.3;Discussion;312
17.1.1.5;Conclusions and Recommendations;312
18;978-1-4020-4200-3_17_OnlinePDF.pdf;315
18.1;A Stochastic Model for Simulating Long Time Series of River-Mouth Discharge and Sediment Load;315
18.1.1;R.M. Hoogendoorn and G.J. Weltje;315
18.1.1.1;Introduction;315
18.1.1.2;Theory;317
18.1.1.3;Simulations from Discharge Measurements;321
18.1.1.4;Prediction of River Discharge;325
18.1.1.5;Kura River Simulation;327
18.1.1.6;Climate Change and Sediment Supply;330
18.1.1.7;Discussion and Conclusions;333
19;978-1-4020-4200-3_18_OnlinePDF.pdf;336
19.1;SECTIONIV Flood Forecasting;336
19.1.1;Forecasting Flash Floods with an Operational Model;337
19.1.1.1;P.A. Ayral, S. Sauvagnargues-Lesage, S. Gay, and F. Bressand;337
19.1.1.1.1;Introduction;337
19.1.1.1.2;The Model ALHTAÏR: Context and Issues;338
19.1.1.1.2.1;ALHTAÏR Structure;339
19.1.1.1.2.2;ALHTAÏR in ``Watershed'' Mode;341
19.1.1.1.3;Evaluation of the Flash Flood Forecasting Model ALHTAÏR;343
19.1.1.1.3.1;The Extreme Rainfall Event;343
19.1.1.1.3.2;Materials and Method;344
19.1.1.1.3.3;Results of the Evaluation of the Efficiency of ALHTAÏR on Small Non-Gauged Watersheds During the September 2002 Event;349
19.1.1.1.4;Discussion;350
19.1.1.1.4.1;About ALHTAÏR in ``Watershed'' Mode;350
19.1.1.1.4.2;Spatialisation of the Forecasting Model;351
19.1.1.1.4.3;First Tests with ALHTAÏR in ``Spatialised Mode'';351
19.1.1.1.5;Conclusion;353
20;978-1-4020-4200-3_19_OnlinePDF.pdf;355
20.1;Flood Forecasting for the Upper and Middle Odra River Basin;355
20.1.1;M. Butts, A. Dubicki, K. Stronska, G. J"01Frgensen, A. Nalberczynski, A. Lewandowski, and T. van Kalken;355
20.1.1.1;Background;356
20.1.1.2;Motivation;357
20.1.1.3;Modelling the Upper and Middle Odra Basin;359
20.1.1.3.1;Continuous Rainfall-Runoff Modelling;359
20.1.1.4;Calibration and Validation of the Upper and Middle Odra Model;363
20.1.1.4.1;Rainfall-Runoff Model Calibration and Validation;364
20.1.1.4.2;The River Network (Hydrodynamic) Model;370
20.1.1.4.3;Polders and Floodplains;372
20.1.1.4.4;Calibration and Validation of the Hydrodynamic Model;374
20.1.1.5;Implementation of Flood Forecastingand Management System for Real Time Operation;379
20.1.1.5.1;Real-Time Data Management;380
20.1.1.5.2;The GIS User Interface;381
20.1.1.5.3;Flood Forecasting and Updating;381
20.1.1.6;Summary and Conclusions;382
21;978-1-4020-4200-3_20_OnlinePDF.pdf;387
21.1;Flood forecasting in the anglian region;387
21.1.1;D.E. Cadman, D.A. Price and M.B. Butts;387
21.1.1.1;Forecasting in Flood Event Management;388
21.1.1.1.1;The Challenge to Flood Forecasting;388
21.1.1.1.2;Meeting the Challenge;389
21.1.1.2;The Anglian Region: Recent Challenges and Solutions;389
21.1.1.2.1;Modelling Challenges;389
21.1.1.2.2;Technical and Organisational Forecasting Capability in the 1990's;390
21.1.1.2.3;The Anglian Flow Forecasting and Modelling System;391
21.1.1.2.4;The Regional Monitoring and Forecasting Centre;394
21.1.1.3;New Challenges and Solutions;394
21.1.1.3.1;A New Cultural Environment;394
21.1.1.3.2;The Need for a New Approach;395
21.1.1.4;Flood Warning as a Risk Management Problem;396
21.1.1.4.1;Applying a Generic Risk Structure to Flood Forecasting;396
21.1.1.4.2;Communicating Risk Information;397
21.1.1.4.3;Conclusion;398
22;978-1-4020-4200-3_21_OnlinePDF.pdf;402
22.1;Flood Forecasting Model Selection;402
22.1.1;K.A. Tilford, K.J. Sene, and R. Khatibi;402
22.1.1.1;Introduction;402
22.1.1.2;Overall Approach;403
22.1.1.3;Key Steps in Applying the Guidelines;404
22.1.1.3.1;Technical Issues;404
22.1.1.3.2;Economic Issues;408
22.1.1.3.3;Associated Issues;410
22.1.1.3.4;Review Model Selection;412
22.1.1.4;Applications;413
22.1.1.5;Discussion and Conclusions;414
23;978-1-4020-4200-3_22_OnlinePDF.pdf;418
23.1;Numerical Modelling in Coastal FloodForecasting and Warning in England and Wales;418
23.1.1;K. Hu and C. Wotherspoon;418
23.1.1.1;Introduction;418
23.1.1.2;Basis of CFFW and Current Practice in England and Wales;419
23.1.1.2.1;Forecasting;419
23.1.1.2.2;Trigger Conditions;421
23.1.1.2.3;Inundation Mapping;421
23.1.1.3;Numerical Modelling in Coastal Flood Forecasting and Warning;423
23.1.1.3.1;Numerical Modelling in Forecasting Tidal Levels and Offshore Wind and Waves;423
23.1.1.3.2;Numerical Modelling in Forecasting Inshore Waves;424
23.1.1.3.3;Numerical Modelling in Forecasting Overtopping of Sea Defence;425
23.1.1.3.4;Numerical Modelling in Forecasting Wind Impact;425
23.1.1.3.5;Numerical Modelling in Forecasting Breach Likelihood;426
23.1.1.3.6;Numerical Modelling of Inundation;427
23.1.1.4;Discussions on the Future Improvement and Practical Problems;427
23.1.1.5;Conclusions;429
24;978-1-4020-4200-3_23_OnlinePDF.pdf;431
24.1;SECTIONV Flood Risk Management Policy;431
24.1.1;Reflections on the Challenges of Eu Policy-Making with View to Flood Risk Management;432
24.1.1.1;A.L. Vetere Arellano, A. De Roo And J.-P. Nordvik;432
24.1.1.1.1;Floods in Europe;433
24.1.1.1.1.1;Flood Risk Management in some European Countries;433
24.1.1.1.2;The Acquis Communautaire with View to Flooding;434
24.1.1.1.3;The Main Policy Areas Addressing Flood-Related Issues Within The European Commission24;446
24.1.1.1.3.1;Directorate General on Environment Policy (DG ENV);454
24.1.1.1.3.2;Directorate General on Agriculture Policy (DG AGRI)29;455
24.1.1.1.3.3;Directorate General on Regional Policy (DG REGIO)30;455
24.1.1.1.3.4;Directorate General on Research Policy (DG RTD)38;456
24.1.1.1.3.5;Directorate General of the Joint Research Centre (DG JRC)43;457
24.1.1.1.3.6;Directorate General on Information SocietyPolicy (DG INFSO);459
24.1.1.1.3.7;ECHO -- European Office for EmergencyHumanitarian Aid48;460
24.1.1.1.3.8;Other Initiatives at EU Level;460
24.1.1.1.4;Identified Needs In Flood Risk Management At Eu Level;461
24.1.1.1.5;A Proposed Vision of Flood Risk Management at Eu Level;465
25;978-1-4020-4200-3_24_OnlinePDF.pdf;468
25.1;On the Flood Risk in the Netherlands;468
25.1.1;L.M. Bouwer And P. Vellinga;468
25.1.1.1;Introduction;468
25.1.1.1.1;Historical Flooding and the Impact on Flood Management Policy;468
25.1.1.1.2;Flooding Frequency Levels;469
25.1.1.2;Contemporary Hydraulic Baseline Conditions;471
25.1.1.2.1;Compliance with Current Standards;471
25.1.1.2.2;Recent Insights in the Hydraulic Conditions;472
25.1.1.3;The Impact of a Large-Scale Flooding Event;475
25.1.1.4;Comparison With Other Risks;476
25.1.1.5;The Impact of Climate Change;478
25.1.1.6;Invest in Flood Defences, or Adjust Safety Levels?;480
25.1.1.7;Conclusions;481
26;978-1-4020-4200-3_25_OnlinePDF.pdf;484
26.1;Planning for River Induced Floods in Urban Areas;484
26.1.1;D. Thorsteinsson, A. Semadeni-Davies and R. Larsson;484
26.1.1.1;Introduction;485
26.1.1.1.1;Background;485
26.1.1.1.2;Objectives and Overview;487
26.1.1.2;Flooding and the Planning Process;487
26.1.1.2.1;Comprehensive Plans;488
26.1.1.2.2;Area Regulations and Detailed Development Plans;488
26.1.1.2.3;Building Permits;489
26.1.1.3;Water Framework Directive;490
26.1.1.4;Flood Mitigation Examples;491
26.1.1.5;The Role of Hydropower;492
26.1.1.5.1;Element of Surprise;495
26.1.1.5.2;Regulate More Wisely?;495
26.1.1.5.3;Dam Safety;496
26.1.1.6;The Role Of Insurers;497
26.1.1.7;Conclusions;498
27;978-1-4020-4200-3_26_OnlinePDF.pdf;503
27.1;Interregional and Transnational Co-Operation in River Basins -- Chances To Improve Flood Risk Management?;503
27.1.1;B. Haupter, P. Heiland and J. Neumüller;503
27.1.1.1;Preface;504
27.1.1.2;Needs For Co-Operation;505
27.1.1.3;Concept For Improved Co-Operation;506
27.1.1.3.1;Levels of Co-operation;506
27.1.1.3.2;Actors for Co-operation;507
27.1.1.3.3;Operating and Promoting Aspects of Co-operation;508
27.1.1.3.4;Support by Economic Incentives and Financial Compensation;509
27.1.1.4;Present State And Visions In Large European River Basins;511
27.1.1.4.1;Co-operation in the Rhine Catchment;511
27.1.1.4.2;The Oder Catchment -- Co-operation;513
27.1.1.4.3;Developments in the Elbe River Basin;515
27.1.1.5;conclusions;516
28;978-1-4020-4200-3_BookBackmatter_OnlinePDF.pdf;521




