E-Book, Englisch, Band 287, 353 Seiten, eBook
E-Book, Englisch, Band 287, 353 Seiten, eBook
Reihe: Graduate Texts in Mathematics
ISBN: 978-3-030-54533-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into
L
-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give riseto Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener–Hopf method.
Showcasing an array of accessible excursions,
Explorations in Complex Functions
is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Basics.- Linear Fractional Transformations.- Hyperbolic geometry.- Harmonic Functions.- Conformal maps and the Riemann mapping theorem.- The Schwarzian derivative.- Riemann surfaces and algebraic curves.- Entire functions.- Value distribution theory.- The gamma and beta functions.- The Riemann zeta function.- L-functions and primes.- The Riemann hypothesis.- Elliptic functions and theta functions.- Jacobi elliptic functions.- Weierstrass elliptic functions.- Automorphic functions and Picard's theorem.- Integral transforms.- Theorems of Phragmén–Lindelöf and Paley–Wiener.- Theorems of Wiener and Lévy; the Wiener–Hopf method.- Tauberian theorems.- Asymptotics and the method of steepest descent.- Complex interpolation and the Riesz–Thorin theorem.