Buch, Englisch, 556 Seiten, Format (B × H): 193 mm x 259 mm, Gewicht: 1408 g
Buch, Englisch, 556 Seiten, Format (B × H): 193 mm x 259 mm, Gewicht: 1408 g
Reihe: Chapman & Hall/CRC Texts in Statistical Science
ISBN: 978-1-4987-2448-7
Verlag: Taylor & Francis Inc
Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions.
Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik Mathematik Stochastik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
Weitere Infos & Material
This site includes additional resources:http://mdsr-book.github.io/
Introduction to Data Science
Prologue: Why data science?
Data visualization
A grammar for graphics
Data wrangling
Tidy data and iteration
Professional Ethics
Statistics and Modeling
Statistical foundations
Statistical learning and predictive analytics
Unsupervised learning
Simulation
Topics in Data Science
Interactive data graphics
Database querying using SQL
Database administration
Working with spatial data
Text as data
Network science
Epilogue: Towards \big data"
Appendices
Packages used in this book
Introduction to R and RStudio
Algorithmic thinking
Reproducible analysis and workflow
Regression modeling
Setting up a database server