Bartz-Beielstein / Filipic / Filipic | High-Performance Simulation-Based Optimization | E-Book | sack.de
E-Book

E-Book, Englisch, Band 833, 291 Seiten, eBook

Reihe: Studies in Computational Intelligence

Bartz-Beielstein / Filipic / Filipic High-Performance Simulation-Based Optimization

E-Book, Englisch, Band 833, 291 Seiten, eBook

Reihe: Studies in Computational Intelligence

ISBN: 978-3-030-18764-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That’s where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.
Bartz-Beielstein / Filipic / Filipic High-Performance Simulation-Based Optimization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


In?ll Criteria for Multiobjective Bayesian Optimization.- Many-Objective Optimization with Limited Computing Budget.- Multi-Objective Bayesian Optimization for Engineering Simulation.- Automatic Con?guration of Multi-Objective Optimizers and Multi-Objective Con?guration.- Optimization and Visualization in Many-Objective Space Trajectory Design.- Simulation Optimization through Regression or Kriging Metamodels.- Towards Better Integration of Surrogate Models and Optimizers.- Surrogate-Assisted Evolutionary Optimization of Large Problems.- Overview and Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and Discrete Variables: Application on Aerospace Design Problems.- Open Issues in Surrogate-Assisted Optimization.- A Parallel Island Model for Hypervolume-Based Many-Objective Optimization.- Many-Core Branch-and-Bound for GPU Accelerators and MIC Coprocessors.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.