Buch, Englisch, Band 276, 418 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1750 g
Reihe: Progress in Mathematics
Buch, Englisch, Band 276, 418 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1750 g
Reihe: Progress in Mathematics
ISBN: 978-0-8176-3246-5
Verlag: Birkhauser Boston
Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character.
"Fourier–Mukai and Nahm Transforms in Geometry and Mathematical Physics" examines the algebro-geometric approach (Fourier–Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a considerable amount of material from existing literature which has not been systematically organized into a monograph.
Key features: Basic constructions and definitions are presented in preliminary background chapters - Presentation explores applications and suggests several open questions - Extensive bibliography and index.
This self-contained monograph provides an introduction to current research in geometry and mathematical physics and is intended for graduate students and researchers just entering this field.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
Weitere Infos & Material
Integral functors.- Fourier-Mukai functors.- Fourier-Mukai on Abelian varieties.- Fourier-Mukai on K3 surfaces.- Nahm transforms.- Relative Fourier-Mukai functors.- Fourier-Mukai partners and birational geometry.- Derived and triangulated categories.- Lattices.- Miscellaneous results.- Stability conditions for derived categories.