Buch, Englisch, 364 Seiten, Format (B × H): 167 mm x 246 mm, Gewicht: 1640 g
Buch, Englisch, 364 Seiten, Format (B × H): 167 mm x 246 mm, Gewicht: 1640 g
Reihe: International Mathematical Series
ISBN: 978-0-387-75216-7
Verlag: Springer
In this authoritative and comprehensive volume, Claude Bardos and Andrei Fursikov have drawn together an impressive array of international contributors to present important recent results and perspectives in this area. The main subjects that appear here relate largely to mathematical aspects of the theory but some novel schemes used in applied mathematics are also presented. Various topics from control theory, including Navier-Stokes equations, are covered.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
Weitere Infos & Material
Solid Controllability in Fluid Dynamics.- Analyticity of Periodic Solutions of the 2D Boussinesq System.- Nonlinear Dynamics of a System of Particle-Like Wavepackets.- Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations.- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics.- Existence Theorems for the 3D–Navier–Stokes System Having as Initial Conditions Sums of Plane Waves.- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains.- Increased Stability in the Cauchy Problem for Some Elliptic Equations.