Buch, Englisch, 288 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 589 g
ISBN: 978-1-78630-603-6
Verlag: Wiley
This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.
Autoren/Hrsg.
Fachgebiete
- Sozialwissenschaften Pädagogik Lehrerausbildung, Unterricht & Didaktik Allgemeine Didaktik Naturwissenschaften, Mathematik (Unterricht & Didaktik)
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Mathematik Allgemein
- Sozialwissenschaften Pädagogik Pädagogik Bildungssystem Curricula: Planung und Entwicklung
Weitere Infos & Material
Preface xi
Vlad Stefan BARBU and Nicolas VERGNE
Part 1. Markov and Semi-Markov Processes 1
Chapter 1. Variable Length Markov Chains, Persistent Random Walks: A Close Encounter 3
Peggy CÉNAC, Brigitte CHAUVIN, Frédéric PACCAUT and Nicolas POUYANNE
1.1. Introduction 3
1.2. VLMCs: definition of the model 6
1.3. Definition and behavior of PRWs 9
1.3.1. PRWs in dimension one 9
1.3.2. PRWs in dimension two 13
1.4. VLMC: existence of stationary probability measures 15
1.5. Where VLMC and PRW meet 19
1.5.1. Semi-Markov chains and Markov additive processes 19
1.5.2. PRWs induce semi-Markov chains 20
1.5.3. Semi-Markov chain of the a-LIS in a stable VLMC 22
1.5.4. The meeting point 23
1.6. References 27
Chapter 2. Bootstraps of Martingale-difference Arrays Under the Uniformly Integrable Entropy 29
Salim BOUZEBDA and Nikolaos LIMNIOS
2.1. Introduction and motivation 29
2.2. Some preliminaries and notation 30
2.3. Main results 35
2.4. Application for the semi-Markov kernel estimators 36
2.5. Proofs 41
2.6. References 45
Chapter 3. A Review of the Dividend Discount Model: From Deterministic to Stochastic Models 47
Guglielmo D’AMICO and Riccardo DE BLASIS
3.1. Introduction 47
3.2. General model 48
3.3. Gordon growth model and extensions 50
3.3.1. Gordon model 50
3.3.2. Two-stage model 51
3.3.3. H model 52
3.3.4. Three-stage model 52
3.3.5. N-stage model 53
3.3.6. Other extensions 53
3.4. Markov chain stock models 54
3.4.1. Hurley and Johnson model 54
3.4.2. Yao model 56
3.4.3. Markov stock model 57
3.4.4. Multivariate Markov chain stock model 61
3.5. Conclusion 64
3.6. References 65
Chapter 4. Estimation of Piecewise-deterministic Trajectories in a Quantum Optics Sc