Barbakh / Fyfe / Wu | Non-Standard Parameter Adaptation for Exploratory Data Analysis | Buch | 978-3-642-26055-1 | sack.de

Buch, Englisch, 223 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g

Reihe: Studies in Computational Intelligence

Barbakh / Fyfe / Wu

Non-Standard Parameter Adaptation for Exploratory Data Analysis


2009
ISBN: 978-3-642-26055-1
Verlag: Springer

Buch, Englisch, 223 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-26055-1
Verlag: Springer


Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets.

We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods.

We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation.

Barbakh / Fyfe / Wu Non-Standard Parameter Adaptation for Exploratory Data Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Review of Clustering Algorithms.- Review of Linear Projection Methods.- Non-standard Clustering Criteria.- Topographic Mappings and Kernel Clustering.- Online Clustering Algorithms and Reinforcement Learning.- Connectivity Graphs and Clustering with Similarity Functions.- Reinforcement Learning of Projections.- Cross Entropy Methods.- Artificial Immune Systems.- Conclusions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.