E-Book, Englisch, 532 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
E-Book, Englisch, 532 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
ISBN: 978-3-13-198421-0
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
methods in synthetic chemistry. Its product-based classification system enables
chemists to easily find solutions to their synthetic problems.
Key Features:
- Critical selection of reliable synthetic methods,
saving the researcher the time required to find procedures in the primary
literature. - Expertise provided by leading chemists. - Detailed experimental procedures. - The information is highly organized in a
logical format to allow easy access to the relevant
information.
The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.
Zielgruppe
Wissenschaftler
Autoren/Hrsg.
Weitere Infos & Material
1;Science of Synthesis: Knowledge Updates 2013/2;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;18
1.6;Table of Contents;20
1.7;Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10–8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os);36
1.7.1;1.1 Product Class 1: Organometallic Complexes of Nickel;36
1.7.1.1;1.1.5 Organometallic Complexes of Nickel;36
1.7.1.1.1;1.1.5.1 Nickel Complexes of 1,3-Dienes;36
1.7.1.1.1.1;1.1.5.1.1 Method 1: Applications in Diene–Diene Cycloadditions;36
1.7.1.1.1.2;1.1.5.1.2 Method 2: Diene–Aldehyde Reductive Coupling;38
1.7.1.1.1.2.1;1.1.5.1.2.1 Variation 1: Triethylsilane-Mediated Reactions;38
1.7.1.1.1.2.2;1.1.5.1.2.2 Variation 2: Triethylborane-Mediated Reactions;39
1.7.1.1.1.2.3;1.1.5.1.2.3 Variation 3: Organoaluminum-Mediated Reactions;40
1.7.1.1.1.2.4;1.1.5.1.2.4 Variation 4: Bismetalative Reductive Coupling Mediated by Main Group Bimetallic Reagents;42
1.7.1.1.1.2.5;1.1.5.1.2.5 Variation 5: Reductive Coupling of Dienes with Other Carbonyl Compounds or Imines;44
1.7.1.1.1.3;1.1.5.1.3 Method 3: Addition of Main Group Elements to Dienes;47
1.7.1.1.1.3.1;1.1.5.1.3.1 Variation 1: Hydroelement Addition to Dienes;47
1.7.1.1.1.3.2;1.1.5.1.3.2 Variation 2: Interelement Addition to Dienes;48
1.7.1.1.1.3.3;1.1.5.1.3.3 Variation 3: Main Group Element/Carbon Nucleophile Addition to Dienes;49
1.7.1.1.1.3.4;1.1.5.1.3.4 Variation 4: Addition of C--H Bonds to Dienes;50
1.7.1.1.2;1.1.5.2 Nickel–Allyl Complexes;51
1.7.1.1.2.1;1.1.5.2.1 Method 1: Oxidative Addition of But-3-enenitriles in the Presence of Lewis Acids;51
1.7.1.1.2.2;1.1.5.2.2 Method 2: Oxidative Addition of Allylic Chalcogenides;52
1.7.1.1.2.3;1.1.5.2.3 Method 3: Oxidative Heterocoupling of Carbonyl Compounds and Dienes;53
1.7.1.1.2.4;1.1.5.2.4 Method 4: Reaction of Nickel–Allyl Complexes with Main Group Organometallics;53
1.7.1.1.2.5;1.1.5.2.5 Method 5: Alkyne Insertion with Nickel–Allyl Complexes;54
1.7.1.1.2.5.1;1.1.5.2.5.1 Variation 1: But-3-enenitrile-Derived Nickel–Allyl Complexes;55
1.7.1.1.2.5.2;1.1.5.2.5.2 Variation 2: Allyl Chalcogenide Derived Nickel–Allyl Complexes;56
1.7.1.1.2.5.3;1.1.5.2.5.3 Variation 3: Nickel–Allyl Complexes Derived from Dimerization of 1,3-Dienes;56
1.7.1.1.2.5.4;1.1.5.2.5.4 Variation 4: Nickel–Allyl Complexes Derived from Dienes and Carbonyl Compounds;57
1.7.1.1.3;1.1.5.3 Nickel–Alkyne Complexes;58
1.7.1.1.3.1;1.1.5.3.1 Method 1: Coupling of Alkynes with Carbon Dioxide;58
1.7.1.1.3.2;1.1.5.3.2 Method 2: Coupling of Alkynes with Carbonyl Compounds;60
1.7.1.1.3.2.1;1.1.5.3.2.1 Variation 1: Coupling of Alkynes with Aldehydes and Ketones;60
1.7.1.1.3.2.2;1.1.5.3.2.2 Variation 2: Coupling of Alkynes with Aldimines;61
1.7.1.1.3.2.3;1.1.5.3.2.3 Variation 3: Coupling of Alkynes with Unsaturated Carbonyl Compounds;63
1.7.1.1.3.3;1.1.5.3.3 Method 3: Reductive Coupling of Alkynes with Epoxides;65
1.7.1.1.3.4;1.1.5.3.4 Method 4: [2 +2+ 2] Cycloaddition with Heterocumulene Partners;66
1.7.1.1.3.5;1.1.5.3.5 Method 5: Reactions of Nickel–Alkyne Complexes with Strained Ring Systems;68
1.7.1.1.3.6;1.1.5.3.6 Method 6: Addition of Main Group Elements to Alkynes;70
1.7.1.1.3.6.1;1.1.5.3.6.1 Variation 1: Hydroelement Additions to Alkynes;70
1.7.1.1.3.6.2;1.1.5.3.6.2 Variation 2: Carbon–Main Group Element Additions to Alkynes;72
1.7.1.1.3.6.3;1.1.5.3.6.3 Variation 3: Direct Carbon–Hydrogen Additions to Alkynes;74
1.7.1.1.3.6.4;1.1.5.3.6.4 Variation 4: Direct Carbon–Carbon Additions to Alkynes;75
1.7.1.1.3.7;1.1.5.3.7 Method 7: Nickel–Aryne Complexes;76
1.7.1.1.4;1.1.5.4 Nickel–Alkene Complexes;78
1.7.1.1.4.1;1.1.5.4.1 Method 1: Alkene Hydrocyanation;78
1.7.1.1.4.2;1.1.5.4.2 Method 2: Alkene Polymerization;78
1.7.1.1.4.3;1.1.5.4.3 Method 3: Alkene Hydroamination;79
1.7.1.1.4.4;1.1.5.4.4 Method 4: Alkene Hydrophosphinylation;80
1.7.1.1.4.5;1.1.5.4.5 Method 5: Alkene Carboxylation;81
1.7.1.1.4.6;1.1.5.4.6 Method 6: Direct Alkene Addition;81
1.7.1.1.4.6.1;1.1.5.4.6.1 Variation 1: Direct Hydroalkenylation;81
1.7.1.1.4.6.2;1.1.5.4.6.2 Variation 2: Direct Hydroalkylation;82
1.7.1.1.4.7;1.1.5.4.7 Method 7: Coupling of Alkenes and Aldehydes;83
1.7.1.1.4.8;1.1.5.4.8 Method 8: Alkene Rearrangements;84
1.7.1.1.4.8.1;1.1.5.4.8.1 Variation 1: Allylic Isomerization;85
1.7.1.1.4.8.2;1.1.5.4.8.2 Variation 2: Isomerization of Vinylcyclopropanes and Analogous Compounds;85
1.7.1.1.5;1.1.5.5 Nickel–Allene Complexes;86
1.7.1.1.5.1;1.1.5.5.1 Method 1: Allene Oligomerization;87
1.7.1.1.5.2;1.1.5.5.2 Method 2: Allene Carboxylation;87
1.7.1.1.5.3;1.1.5.5.3 Method 3: Reductive Coupling of Allenes and Aldehydes;88
1.7.1.1.5.4;1.1.5.5.4 Method 4: Coupling of Allenes and a,ß-Unsaturated Carbonyl Compounds;90
1.7.2;1.2 Product Class 2: Organometallic Complexes of Palladium;98
1.7.2.1;1.2.6 High-Valent Palladium in Catalysis;98
1.7.2.1.1;1.2.6.1 C--H Activation/Functionalization of Arenes and Alkanes;101
1.7.2.1.1.1;1.2.6.1.1 Method 1: Functionalization of Aromatic C--H Bonds;102
1.7.2.1.1.1.1;1.2.6.1.1.1 Variation 1: C--C Bond Construction;102
1.7.2.1.1.1.2;1.2.6.1.1.2 Variation 2: C--O Bond Construction;107
1.7.2.1.1.1.3;1.2.6.1.1.3 Variation 3: C--X Bond Construction (X = Halo);109
1.7.2.1.1.1.4;1.2.6.1.1.4 Variation 4: C--N Bond Construction;112
1.7.2.1.1.2;1.2.6.1.2 Method 2: Functionalization of Aliphatic C--H Bonds;113
1.7.2.1.1.2.1;1.2.6.1.2.1 Variation 1: C--C Bond Construction;113
1.7.2.1.1.2.2;1.2.6.1.2.2 Variation 2: C--O Bond Construction;115
1.7.2.1.1.2.3;1.2.6.1.2.3 Variation 3: C--X Bond Construction (X = Halo);117
1.7.2.1.1.2.4;1.2.6.1.2.4 Variation 4: C--N Bond Construction;118
1.7.2.1.2;1.2.6.2 Difunctionalization of Alkenes;120
1.7.2.1.2.1;1.2.6.2.1 Method 1: C--O Bond Construction from High-Valent Palladium Centers;120
1.7.2.1.2.1.1;1.2.6.2.1.1 Variation 1: Initiated by Aminopalladation;120
1.7.2.1.2.1.2;1.2.6.2.1.2 Variation 2: Initiated by Oxypalladation;125
1.7.2.1.2.2;1.2.6.2.2 Method 2: C--N Bond Construction from High-Valent Palladium Centers;126
1.7.2.1.2.2.1;1.2.6.2.2.1 Variation 1: Initiated by Aminopalladation;126
1.7.2.1.2.2.2;1.2.6.2.2.2 Variation 2: Initiated by Fluoropalladation;129
1.7.2.1.2.3;1.2.6.2.3 Method 3: C--X Bond Construction (X = Halo) from High-Valent Palladium Centers;130
1.7.2.1.2.3.1;1.2.6.2.3.1 Variation 1: Initiated by Aminopalladation;130
1.7.2.1.2.3.2;1.2.6.2.3.2 Variation 2: Initiated by Carbopalladation;132
1.7.2.1.2.4;1.2.6.2.4 Method 4: C--C Bond Construction from High-Valent Palladium Centers;134
1.7.2.1.2.4.1;1.2.6.2.4.1 Variation 1: Initiated by Aminopalladation;135
1.7.2.1.2.4.2;1.2.6.2.4.2 Variation 2: Initiated by Oxypalladation–Insertion;135
1.7.2.1.2.4.3;1.2.6.2.4.3 Variation 3: Initiated by Arylpalladation;137
1.8;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;144
1.8.1;4.4 Product Class 4: Silicon Compounds;144
1.8.1.1;4.4.5 Product Subclass 5: Disilanes and Oligosilanes;144
1.8.1.1.1;4.4.5.1 Disilanes;145
1.8.1.1.1.1;4.4.5.1.1 Method 1: Synthesis by Formation of Si--Si Bonds;149
1.8.1.1.1.1.1;4.4.5.1.1.1 Variation 1: Reductive Coupling of Triorganosilyl Halides;149
1.8.1.1.1.1.2;4.4.5.1.1.2 Variation 2: Dehydrogenative Coupling of Hydrosilanes;151
1.8.1.1.1.1.3;4.4.5.1.1.3 Variation 3: Coupling of Silyl Halides with Silyl Anions;152
1.8.1.1.1.2;4.4.5.1.2 Method 2: Synthesis by Cleavage of Si--C Bonds;153
1.8.1.1.1.2.1;4.4.5.1.2.1 Variation 1: Demethylating Chlorination;153
1.8.1.1.1.2.2;4.4.5.1.2.2 Variation 2: Dearylation and Dealkylation with Strong Acids;154
1.8.1.1.1.3;4.4.5.1.3 Method 3: Synthesis by Functionalization of Si--X Bonds;156
1.8.1.1.1.3.1;4.4.5.1.3.1 Variation 1: Hydrogenation with Lithium Aluminum Hydride;156
1.8.1.1.2;4.4.5.2 Oligosilanes;157
1.8.1.1.2.1;4.4.5.2.1 Method 1: Synthesis by Formation of Si--Si Bonds;159
1.8.1.1.2.1.1;4.4.5.2.1.1 Variation 1: Wurtz-Type Coupling;160
1.8.1.1.2.2;4.4.5.2.2 Method 2: Synthesis by Cleavage of Si--Si Bonds and Subsequent Derivatization;161
1.8.1.1.2.2.1;4.4.5.2.2.1 Variation 1: Silyl Anion Formation;161
1.8.1.1.2.2.2;4.4.5.2.2.2 Variation 2: Anion Hydrolysis to Hydrosilanes;162
1.8.1.1.2.2.3;4.4.5.2.2.3 Variation 3: Halogenation;162
1.8.1.1.2.3;4.4.5.2.3 Method 3: Synthesis by Alkylation and Arylation;163
1.8.1.1.2.3.1;4.4.5.2.3.1 Variation 1: Reactions Using Silyl Anions;163
1.8.1.1.2.3.2;4.4.5.2.3.2 Variation 2: Reactions Using Silyl Halides;165
1.8.1.1.2.3.3;4.4.5.2.3.3 Variation 3: Cross Coupling;166
1.8.1.1.2.4;4.4.5.2.4 Method 4: Synthesis by Hydrosilylation;167
1.8.1.1.2.5;4.4.5.2.5 Method 5: Synthesis by Silyl Ether Formation;168
1.8.1.1.2.6;4.4.5.2.6 Method 6: Synthesis by Cleavage of Si--C Bonds;169
1.8.1.2;4.4.9 Product Subclass 9: Silylzinc Reagents;176
1.8.1.2.1;Synthesis of Product Subclass 9;176
1.8.1.2.1.1;4.4.9.1 Method 1: Synthesis from a Triorganosilyl Anion Source and Zinc(II) Reagents;176
1.8.1.2.1.1.1;4.4.9.1.1 Variation 1: Dialkyl(triorganosilyl)zincate Reagents from an Alkylmetal, a (Triorganosilyl)metal Reagent, and a Zinc(II) Salt;178
1.8.1.2.1.2;4.4.9.2 Method 2: Synthesis of Dianion-Type Silylzincates;178
1.8.1.2.2;Applications of Product Subclass 9 in Organic Synthesis;179
1.8.1.2.2.1;4.4.9.3 Method 3: Addition of Silyl Groups to Alkenes, Alkynes, and Epoxides;179
1.8.1.3;4.4.21.13 Silylamines;186
1.8.1.3.1;4.4.21.13.1 Method 1: Reaction of Chlorosilanes with Amines Bearing NH Groups;186
1.8.1.3.1.1;4.4.21.13.1.1 Variation 1: Reaction of Allyltrichlorosilane with Diamines;186
1.8.1.3.1.2;4.4.21.13.1.2 Variation 2: Reaction of Allyltrichlorosilane with Amino Alcohols;187
1.8.1.3.1.3;4.4.21.13.1.3 Variation 3: Reaction of Silicon Tetrachloride with 1-Methyl-1H-imidazole-2(3H)-thione;187
1.8.1.3.2;4.4.21.13.2 Method 2: Reaction of Silicon Tetrachloride with Silylamines;188
1.8.1.3.3;4.4.21.13.3 Method 3: Reaction of Halosilanes with Lithium Amides;189
1.8.1.3.3.1;4.4.21.13.3.1 Variation 1: Reaction of Silicon Tetrabromide with Lithium ß-Diketiminates;189
1.8.1.3.3.2;4.4.21.13.3.2 Variation 2: Reaction of Silicon Tetrachloride or Trichlorosilane with N,N'-Dialkylbenzimidamide Lithium Salts To Form Low-Coordinate Silicon Species;190
1.8.1.3.3.3;4.4.21.13.3.3 Variation 3: Reaction of Trichlorosilane with N,N'-Dialkylbenzimidamide Lithium Salts To Form High-Coordinate Silicon Species;191
1.8.1.3.3.4;4.4.21.13.3.4 Variation 4: Reaction of Chlorosilanes with Dilithium Tetra-4-tolylporphyrinate;192
1.8.1.3.4;4.4.21.13.4 Method 4: Reaction of Halosilanes with Hetarenes or Tertiary Amines;193
1.8.1.3.4.1;4.4.21.13.4.1 Variation 1: Reaction of Dichlorosilane with 2,2'-Bipyridine To Form a High-Coordinate Silicon Species;193
1.8.1.3.4.2;4.4.21.13.4.2 Variation 2: Reaction of Silicon Tetrafluoride with a Triazacyclononane To Form a Cationic Silicon(IV) Species;193
1.8.1.3.5;4.4.21.13.5 Method 5: Reaction of Dichlorosilanes with Hydrazonic Acid Esters and Thermal Rearrangement;194
1.8.1.3.6;4.4.21.13.6 Method 6: Reaction of Di- and Trihydrosilanes with N-Heterocyclic Carbenes;194
1.8.1.3.7;4.4.21.13.7 Method 7: Dehydrogenative Condensation of Hydrosilanes with Amines;195
1.8.1.3.7.1;4.4.21.13.7.1 Variation 1: Ruthenium-Catalyzed Reaction of Hydrosilanes with Indoles and Carbazoles;195
1.8.1.3.7.2;4.4.21.13.7.2 Variation 2: Ytterbium-Catalyzed Reaction of Hydrosilanes with Amines;196
1.8.1.3.7.3;4.4.21.13.7.3 Variation 3: Zinc-Catalyzed Reaction of Hydrosilanes with Indoles;197
1.8.1.3.7.4;4.4.21.13.7.4 Variation 4: Reaction of 1-Boryl-2-(hydrosilyl)benzenes with Amines;198
1.8.1.3.8;4.4.21.13.8 Method 8: Preparation of Cyclic Diaminosilylenes;199
1.8.1.3.8.1;4.4.21.13.8.1 Variation 1: Reduction of Dihalosilanes with Alkali Metals;199
1.8.1.3.8.2;4.4.21.13.8.2 Variation 2: Dehydrochlorination Using N-Heterocyclic Carbenes;200
1.8.1.3.9;4.4.21.13.9 Method 9: Reactions of (Aminosilyl)lithiums;201
1.8.1.3.9.1;4.4.21.13.9.1 Variation 1: Preparation of an (Aminosilyl)pinacolborane;201
1.8.1.3.9.2;4.4.21.13.9.2 Variation 2: Preparation of 1,3-Diaminotrisilanes;202
1.8.1.4;4.4.22 Product Subclass 22: Silyl Phosphines;204
1.8.1.4.1;Synthesis of Product Subclass 22;205
1.8.1.4.1.1;4.4.22.1 Method 1: Synthesis from Silyl Hydrides;205
1.8.1.4.1.1.1;4.4.22.1.1 Variation 1: By Dehydrohalogenation;205
1.8.1.4.1.1.2;4.4.22.1.2 Variation 2: By Dehydrogenation with Phosphines;205
1.8.1.4.1.1.3;4.4.22.1.3 Variation 3: By Hydrosilylation of P--P Bonds;206
1.8.1.4.1.2;4.4.22.2 Method 2: Synthesis from Silyl Halides;207
1.8.1.4.1.2.1;4.4.22.2.1 Variation 1: From Elemental Phosphorus;207
1.8.1.4.1.2.2;4.4.22.2.2 Variation 2: From Phosphines;208
1.8.1.4.1.2.3;4.4.22.2.3 Variation 3: From Metal Phosphides;209
1.8.1.4.1.3;4.4.22.3 Method 3: Substitution by Silyllithiums;213
1.8.1.4.1.4;4.4.22.4 Method 4: Synthesis from Other Silyl Phosphines;213
1.8.1.4.1.4.1;4.4.22.4.1 Variation 1: By Exchange of Silyl Groups;214
1.8.1.4.1.4.2;4.4.22.4.2 Variation 2: By Conversion of Phosphines;214
1.8.1.4.1.4.3;4.4.22.4.3 Variation 3: By Transmetalation of Silyl Phosphines;215
1.8.1.4.1.5;4.4.22.5 Method 5: Miscellaneous Methods;215
1.8.1.4.2;Applications of Product Subclass 22 in Organic Synthesis;216
1.8.1.4.2.1;4.4.22.6 Method 6: Synthesis of Silicon-Containing Compounds;216
1.8.1.4.2.1.1;4.4.22.6.1 Variation 1: Synthesis of Silyl Ethers by Substitution;216
1.8.1.4.2.2;4.4.22.7 Method 7: Synthesis of Organophosphorus Compounds by Substitution;217
1.8.1.4.2.2.1;4.4.22.7.1 Variation 1: Of Haloalkanes;217
1.8.1.4.2.2.2;4.4.22.7.2 Variation 2: Of Haloarenes;218
1.8.1.4.2.2.3;4.4.22.7.3 Variation 3: Of Halohetarenes;220
1.8.1.4.2.2.4;4.4.22.7.4 Variation 4: Of Acyl Halides;221
1.8.1.4.2.3;4.4.22.8 Method 8: Synthesis of Organophosphorus Compounds by Addition;221
1.8.1.4.2.3.1;4.4.22.8.1 Variation 1: To Aldehydes;222
1.8.1.4.2.3.2;4.4.22.8.2 Variation 2: To Alkenes;222
1.8.1.4.2.3.3;4.4.22.8.3 Variation 3: To Alkynes;223
1.8.1.4.2.3.4;4.4.22.8.4 Variation 4: To Epoxides;224
1.8.1.4.2.4;4.4.22.9 Method 9: Synthesis of Organophosphorus Compounds by Addition–Elimination;225
1.8.1.4.2.4.1;4.4.22.9.1 Variation 1: Synthesis of Phosphaalkenes;225
1.8.1.4.2.4.2;4.4.22.9.2 Variation 2: Synthesis of Phosphaalkynes;226
1.8.1.4.2.4.3;4.4.22.9.3 Variation 3: Synthesis of Phosphorus-Containing Heterocycles;227
1.8.1.5;4.4.41.8 ß-Silyl Carbonyl Compounds;232
1.8.1.5.1;4.4.41.8.1 Method 1: Silylmetalation of Alkenes;236
1.8.1.5.1.1;4.4.41.8.1.1 Variation 1: Silylmetalation of a,ß-Unsaturated Carbonyl Compounds;237
1.8.1.5.1.2;4.4.41.8.1.2 Variation 2: Silylmetalation–Aldolization of a,ß-Unsaturated Carbonyl Compounds;239
1.8.1.5.1.3;4.4.41.8.1.3 Variation 3: Silaboration–Oxidation of meso-Methylenecyclopropanes;239
1.8.1.5.2;4.4.41.8.2 Method 2: Hydrosilylation of Alkynes;240
1.8.1.5.2.1;4.4.41.8.2.1 Variation 1: Hydrosilylation of Alkynyl Carbonyl Compounds;241
1.8.1.5.2.2;4.4.41.8.2.2 Variation 2: Hydrosilylation–Geminal Alkylation;241
1.8.1.5.3;4.4.41.8.3 Method 3: Asymmetric Conversion of a,ß-Unsaturated ß-Silyl Carbonyl Compounds into Their Saturated Counterparts;242
1.8.1.5.3.1;4.4.41.8.3.1 Variation 1: Asymmetric Hydrosilylation of a,ß-Unsaturated ß-Silyl Carbonyl Compounds;243
1.8.1.5.3.2;4.4.41.8.3.2 Variation 2: Asymmetric 1,4-Addition of Carbon Nucleophiles to a,ß-Unsaturated ß-Silyl Carbonyl Compounds;243
1.8.1.5.3.3;4.4.41.8.3.3 Variation 3: 1,4-Addition of Carbon Nucleophiles to Alkynyl ß-Silyl Carbonyl Compounds;245
1.8.1.5.4;4.4.41.8.4 Method 4: Rearrangements and Silyl Migration;246
1.9;Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles;250
1.9.1;17.5 Product Class 5: Seven-Membered Hetarenes with Two or More Heteroatoms;250
1.9.1.1;17.5.4 Seven-Membered Hetarenes with Two or More Heteroatoms;250
1.9.1.1.1;17.5.4.1 1,2-Diazepines;254
1.9.1.1.1.1;17.5.4.1.1 Synthesis by Ring-Closure Reactions;255
1.9.1.1.1.1.1;17.5.4.1.1.1 Method 1: Condensation of 1,5-Diketones with Hydrazine;255
1.9.1.1.1.1.1.1;17.5.4.1.1.1.1 Variation 1: Condensation of 1,5-Diketones, 1,5-Keto Acids, or 1,5-Keto Esters with Hydrazine;255
1.9.1.1.1.1.1.2;17.5.4.1.1.1.2 Variation 2: Condensation of Imidazothiadiazole Aldehydes with Hydrazine;256
1.9.1.1.1.1.1.3;17.5.4.1.1.1.3 Variation 3: Cyclization of Indol-2-ylacetates and Indole-2-carboxylates with Hydrazine;257
1.9.1.1.1.2;17.5.4.1.2 Synthesis by Ring Transformation;258
1.9.1.1.1.2.1;17.5.4.1.2.1 By Ring Enlargement;258
1.9.1.1.1.2.1.1;17.5.4.1.2.1.1 Method 1: Reaction of Benzocyclobutenones and Diazomethylene Compounds;258
1.9.1.1.1.2.1.2;17.5.4.1.2.1.2 Method 2: Synthesis from Benzoselenopyrylium Salts and Hydrazine;261
1.9.1.1.1.3;17.5.4.1.3 Synthesis by Substituent Modification;262
1.9.1.1.1.3.1;17.5.4.1.3.1 By Replacement of Oxygen or Sulfur;262
1.9.1.1.1.3.1.1;17.5.4.1.3.1.1 Method 1: Synthesis of Amidines from Benzodiazepinethiones;262
1.9.1.1.1.3.1.2;17.5.4.1.3.1.2 Method 2: Synthesis of Amidines from Benzodiazepinones and Primary or Secondary Amines Catalyzed by Titanium(IV) Chloride;263
1.9.1.1.2;17.5.4.2 1,3-Diazepines;264
1.9.1.1.2.1;17.5.4.2.1 Synthesis by Ring-Closure Reactions;265
1.9.1.1.2.1.1;17.5.4.2.1.1 Method 1: Synthesis from 2-(2-Isocyanophenyl)acetamides and Sulfur via Isothiocyanate Intermediates;265
1.9.1.1.2.1.2;17.5.4.2.1.2 Method 2: Synthesis from 4-Hydroxy-2H-1-benzopyran-2-one, Cyanoguanidine, and Aromatic or Heteroaromatic Aldehydes Using Molecular Iodine as Catalyst;266
1.9.1.1.2.1.3;17.5.4.2.1.3 Method 3: Synthesis from a Substituted Aminopyridine and Trichloroacetyl Isocyanate;267
1.9.1.1.2.1.4;17.5.4.2.1.4 Method 4: Synthesis from a Substituted Imidazol-5-amine and Triethyl Orthoformate;269
1.9.1.1.2.1.5;17.5.4.2.1.5 Method 5: Synthesis from a Substituted Imidazole-4,5-dicarboxylate and Guanidine;269
1.9.1.1.3;17.5.4.3 1,4-Diazepines;270
1.9.1.1.3.1;17.5.4.3.1 Synthesis by Ring-Closure Reactions;270
1.9.1.1.3.1.1;17.5.4.3.1.1 Method 1: Synthesis from Benzene-1,2-diamines, Meldrum’s Acid, and Isocyanides;270
1.9.1.1.3.1.2;17.5.4.3.1.2 Method 2: Synthesis from Benzene-1,2-diamines and 1,3-Dicarbonyl Compounds;272
1.9.1.1.3.1.3;17.5.4.3.1.3 Method 3: Synthesis from Pyridine-2,3-diamine and 1,1,1-Trichlorobut-3-en-2-ones;276
1.9.1.1.3.1.4;17.5.4.3.1.4 Method 4: Synthesis from Benzene-1,2-diamines, Diketene, Dialkyl Acetylenedicarboxylates, and Trialkyl Phosphites;276
1.9.1.1.3.1.5;17.5.4.3.1.5 Method 5: Synthesis from Benzene-1,2-diamines and 4-Halogenated N-Substituted 2-Oxo-1,2-dihydropyridine-3-carbodithioates;277
1.9.1.1.3.1.6;17.5.4.3.1.6 Method 6: Reductive Lactamization of Alkyl 2-[(2-Nitrophenyl)amino]benzoates;278
1.9.1.1.3.1.7;17.5.4.3.1.7 Method 7: Copper-Catalyzed Cyclization of 2-Iodoaniline Compounds;279
1.9.1.1.3.1.8;17.5.4.3.1.8 Method 8: Palladium-Catalyzed Intramolecular Carbonylation–Lactamization;280
1.9.1.1.3.1.9;17.5.4.3.1.9 Method 9: Palladium-Catalyzed Intramolecular Amination of N-Alkyl-2-amino-N-(2-iodophenyl)benzamides;281
1.9.1.1.3.1.10;17.5.4.3.1.10 Method 10: Copper-Catalyzed Cyclization of 2-Halobenzoic Acids with Benzene-1,2-diamine;282
1.9.1.1.3.1.11;17.5.4.3.1.11 Method 11: Intramolecular Aza-Wittig Reaction;283
1.9.1.1.3.1.12;17.5.4.3.1.12 Method 12: Synthesis from 2-Aminobenzophenones and Bromoacetyl Bromide or Chloroacetyl Chloride;285
1.9.1.1.3.1.13;17.5.4.3.1.13 Method 13: Bischler–Napieralski Cyclocondensation;288
1.9.1.1.3.1.14;17.5.4.3.1.14 Method 14: Buchwald Amination–Cyclization;291
1.9.1.1.3.2;17.5.4.3.2 Synthesis by Ring Transformation;294
1.9.1.1.3.2.1;17.5.4.3.2.1 By Ring Enlargement;294
1.9.1.1.3.2.1.1;17.5.4.3.2.1.1 Method 1: Synthesis from a-Amino Acids and Isatoic Acid Anhydride or Analogues;294
1.9.1.1.3.3;17.5.4.3.3 Synthesis by Substituent Modification;295
1.9.1.1.3.3.1;17.5.4.3.3.1 By Replacement of Chlorine;295
1.9.1.1.3.3.1.1;17.5.4.3.3.1.1 Method 1: Metal-Catalyzed Coupling of Chloro-5H-dibenzo[b,e][1,4]diazepines with Organozinc or -magnesium Compounds;295
1.10;Volume 18: Four Carbon--Heteroatom Bonds: X--C==X, X==C==X, X2C==X, CX4;300
1.10.1;18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes;300
1.10.1.1;18.1.7 Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes;300
1.10.1.1.1;18.1.7.1 Cyanogen Halides;300
1.10.1.1.1.1;18.1.7.1.1 Applications of Cyanogen Halides in Organic Synthesis;300
1.10.1.1.1.1.1;18.1.7.1.1.1 Method 1: Electrophilic Cyanation;300
1.10.1.1.1.1.2;18.1.7.1.1.2 Method 2: Formation of Cyanooxiranes from Ketones;301
1.10.1.1.2;18.1.7.2 Cyanates and Their Sulfur, Selenium, and Tellurium Analogues;302
1.10.1.1.2.1;18.1.7.2.1 Synthesis of Thiocyanates;302
1.10.1.1.2.1.1;18.1.7.2.1.1 Method 1: Nucleophilic Reactions from Thiocyanate Salts;302
1.10.1.1.2.1.1.1;18.1.7.2.1.1.1 Variation 1: Thiocyanates from Alcohols and Protected Alcohols;302
1.10.1.1.2.1.1.2;18.1.7.2.1.1.2 Variation 2: Ring Opening of Epoxides To Give ß-Hydroxy Thiocyanates;303
1.10.1.1.2.1.1.3;18.1.7.2.1.1.3 Variation 3: Oxidative a-Thiocyanation of Ketones;304
1.10.1.1.2.1.1.4;18.1.7.2.1.1.4 Variation 4: Oxidative Thiocyanation of Aromatic Compounds;305
1.10.1.1.2.1.2;18.1.7.2.1.2 Method 2: Thiocyanates by Ring Opening of Epoxides and Aziridines with Trimethylsilyl Isothiocyanate;306
1.10.1.1.2.1.3;18.1.7.2.1.3 Method 3: Thiocyanates from Acyl Isothiocyanates;306
1.10.1.1.2.1.4;18.1.7.2.1.4 Method 4: Cyanation of Thiols Using N-Cyano Heterocycles;307
1.10.1.1.2.2;18.1.7.2.2 Applications of Thiocyanates in Organic Synthesis;307
1.10.1.1.2.2.1;18.1.7.2.2.1 Method 1: 1,3-Oxathiolan-2-imines from Phenacyl Thiocyanates;308
1.10.1.1.3;18.1.7.3 Sulfonyl Cyanides;308
1.10.1.1.3.1;18.1.7.3.1 Applications of Sulfonyl Cyanides in Organic Synthesis;308
1.10.1.1.3.1.1;18.1.7.3.1.1 Method 1: Diaryl Sulfides from Sulfonyl Cyanides;308
1.10.1.1.3.1.2;18.1.7.3.1.2 Method 2: Allyl Sulfones from Sulfonyl Cyanides and Allylic Alcohols;309
1.10.1.1.3.1.3;18.1.7.3.1.3 Method 3: Synthesis of Aryl 4-Hydroxypyridin-2-yl Sulfones;310
1.10.1.1.4;18.1.7.4 Cyanamides and Their Derivatives;310
1.10.1.1.4.1;18.1.7.4.1 Synthesis of Cyanamides and Their Derivatives;310
1.10.1.1.4.1.1;18.1.7.4.1.1 Method 1: Substitution of Cyanamides;310
1.10.1.1.4.1.1.1;18.1.7.4.1.1.1 Variation 1: Acylation and Arylation of Cyanamides;310
1.10.1.1.4.1.1.2;18.1.7.4.1.1.2 Variation 2: Reaction of Cyanamides with Isocyanates, Isothiocyanates, Thioamides, or Nitriles Yielding Cyanoureas or Cyanoimidamides;311
1.10.1.1.4.1.2;18.1.7.4.1.2 Method 2: Cyanation of Amides Using Cyanogen Halides;313
1.10.1.1.4.1.3;18.1.7.4.1.3 Method 3: Oxidative Elimination from Dithiocarbamates and Thioureas;314
1.10.1.1.4.1.4;18.1.7.4.1.4 Method 4: Reaction of Isocyanates and Isothiocyanates with Hexamethyldisilazanide;314
1.10.1.1.4.1.5;18.1.7.4.1.5 Method 5: Synthesis from Dialkylamino-Substituted Acetamides by a Hofmann-Like Rearrangement;315
1.10.1.1.4.2;18.1.7.4.2 Applications of Cyanamides and Their Derivatives in Organic Synthesis;316
1.10.1.1.4.2.1;18.1.7.4.2.1 Method 1: Cyanation of Amines, Thiols, and CH-Acidic Compounds;316
1.10.1.1.4.2.2;18.1.7.4.2.2 Method 2: Synthesis of N,N-Dialkyl-4,5-dihydro-1H-imidazol-2-amines and N,N-Dialkyl-1H-imidazol-2-amines;317
1.10.1.1.4.2.3;18.1.7.4.2.3 Method 3: Chlorination with N-tert-Butyl-N-chlorocyanamide;318
1.10.1.1.4.2.4;18.1.7.4.2.4 Method 4: Cyclotrimerization of Alkynes or Diynes with Cyanamides To Give Pyridin-2-amines;319
1.10.2;18.11 Product Class 11: Seleno- and Tellurocarbonic Acids and Derivatives;324
1.10.2.1;18.11.10 Seleno- and Tellurocarbonic Acids and Derivatives;324
1.10.2.1.1;18.11.10.1 Selenocarbamates;324
1.10.2.1.1.1;18.11.10.1.1 Method 1: Reaction of N,N-Dimethylselenocarbamoyl Chloride with Lithium Alkaneselenolates, Areneselenolates, Alkanethiolates, or Arenethiolates;324
1.10.2.1.1.2;18.11.10.1.2 Method 2: Reaction of Isoselenocyanates with Nucleophiles;325
1.10.2.1.1.2.1;18.11.10.1.2.1 Variation 1: Reaction of Alkyl or Aryl Isoselenocyanates with Sodium Hydroselenide;325
1.10.2.1.1.2.2;18.11.10.1.2.2 Variation 2: Reaction of Acyl Isoselenocyanates with Alcohols, Thiols, or Selenols;326
1.10.2.1.1.2.3;18.11.10.1.2.3 Variation 3: Reaction of Acryloyl Isoselenocyanates with Sodium Hydroselenide;327
1.10.2.1.1.2.4;18.11.10.1.2.4 Variation 4: Reaction of Isoselenocyanates with Sodium Alkoxides;327
1.10.2.1.1.2.5;18.11.10.1.2.5 Variation 5: Reaction of Isoselenocyanates with Sodium Hydroselenide and Acryloyl Chlorides;328
1.10.2.1.1.2.6;18.11.10.1.2.6 Variation 6: Reaction of Isocyanates with Bis(dimethylaluminum) Selenide and Sodium Alkoxides;330
1.10.2.1.1.2.7;18.11.10.1.2.7 Variation 7: Nucleophilic Addition of N-Protected Amino Thiols to Isoselenocyanates;331
1.10.2.1.2;18.11.10.2 Selenosemicarbazides and Selenosemicarbazones;332
1.10.2.1.2.1;18.11.10.2.1 Method 1: Reaction of Isoselenocyanates with Hydrazine Derivatives;332
1.10.2.1.2.1.1;18.11.10.2.1.1 Variation 1: Reaction of Acyl Isoselenocyanates with Phenylhydrazine;332
1.10.2.1.2.1.2;18.11.10.2.1.2 Variation 2: Reaction of Trityl Isoselenocyanate with Hydrazine;333
1.10.2.1.2.2;18.11.10.2.2 Method 2: Reaction of Carbonyl Compounds with Selenosemicarbazides;334
1.10.2.1.2.2.1;18.11.10.2.2.1 Variation 1: Reaction of Aldehydes with Selenosemicarbazides;334
1.10.2.1.2.2.2;18.11.10.2.2.2 Variation 2: Reaction of Cyclohexanone with Hydrazine Hydrate and Potassium Selenocyanate;335
1.10.2.1.3;18.11.10.3 Selenoureas;337
1.10.2.1.3.1;18.11.10.3.1 Method 1: Reaction of N,N-Dimethylselenocarbamoyl Chloride with Amines;337
1.10.2.1.3.2;18.11.10.3.2 Method 2: Reaction of Viehe’s Salt with an Amine and Tetraethylammonium Tetraselenotungstate;338
1.10.2.1.3.3;18.11.10.3.3 Method 3: Reaction of Triethyl Orthoformate with Elemental Selenium and a Primary or Secondary Amine;338
1.10.2.1.3.4;18.11.10.3.4 Method 4: Reaction of N,N-Disubstituted Cyanamides with Sodium Selenide;340
1.10.2.1.3.5;18.11.10.3.5 Method 5: Reaction of Isoselenocyanates with an Amine;341
1.10.2.1.3.5.1;18.11.10.3.5.1 Variation 1: Reaction of Isoselenocyanates with Protected and Unprotected Glycosylamines;341
1.10.2.1.3.5.2;18.11.10.3.5.2 Variation 2: Reaction of Phenyl Isoselenocyanate with 2-Aminobenzonitriles;346
1.10.2.1.3.5.3;18.11.10.3.5.3 Variation 3: Reaction of Isoselenocyanates with Azetidinones under Basic Conditions;347
1.10.2.1.3.5.4;18.11.10.3.5.4 Variation 4: Reaction of 4-Isoselenocyanato-2,2,6,6-tetramethylpiperidin-1-oxyl with Amines;349
1.10.2.1.3.5.5;18.11.10.3.5.5 Variation 5: Reaction of Aryl Isoselenocyanates with Dimethylamine;351
1.10.2.1.3.5.6;18.11.10.3.5.6 Variation 6: Reaction of D-Glucosamine Hydrochloride or D-Mannosamine Hydrochloride with Aryl Isoselenocyanates;352
1.10.2.1.3.5.7;18.11.10.3.5.7 Variation 7: Reaction of Trityl Isoselenocyanate with a Primary Amine;354
1.10.2.1.3.5.8;18.11.10.3.5.8 Variation 8: Reaction of Isoselenocyanates Bearing Protected Amino Groups with Amines;354
1.10.2.1.3.6;18.11.10.3.6 Method 6: Reaction of Acyl Isoselenocyanates with Amines;356
1.10.2.1.3.6.1;18.11.10.3.6.1 Variation 1: Reaction of In Situ Generated Acyl Isoselenocyanates with Arylamines;356
1.10.2.1.3.6.2;18.11.10.3.6.2 Variation 2: Reaction of In Situ Generated Acyl Isoselenocyanates with Alkylamines;357
1.10.2.1.3.6.3;18.11.10.3.6.3 Variation 3: One-Pot Reaction of Aroyl Chlorides with Potassium Selenocyanate and Secondary Arylamines;357
1.10.2.1.3.7;18.11.10.3.7 Method 7: Selenation of Isocyanates with In Situ Generated Bis(dimethylaluminum) Selenide and Subsequent Treatment with Amines;358
1.10.2.1.3.8;18.11.10.3.8 Method 8: Reaction of Imidoyl Isoselenocyanates with Aromatic 2-Amino N-Heterocycles;360
1.10.2.1.3.9;18.11.10.3.9 Method 9: Reaction of 1-Methylimidazolium Salts with Selenium Powder and Potassium Carbonate;361
1.11;Volume 31: Arene--X (X = Hal, O, S, Se, Te, N, P);364
1.11.1;31.42 Product Class 42: Arylphosphines and Derivatives;364
1.11.1.1;31.42.1 Synthesis of Product Class 42;364
1.11.1.1.1;31.42.1.1 Method 1: Synthesis by Nucleophilic Substitution at an Electrophilic Phosphorus Atom;364
1.11.1.1.1.1;31.42.1.1.1 Variation 1: Using Organometallic Reagents Prepared from Organic Halides;364
1.11.1.1.1.2;31.42.1.1.2 Variation 2: Using Carbanions Prepared by Reduction of Aryl--O Bonds;367
1.11.1.1.1.3;31.42.1.1.3 Variation 3: Using Carbanions Prepared by Halogen–Metal Exchange;367
1.11.1.1.1.4;31.42.1.1.4 Variation 4: Using Carbanions Prepared by Deprotonation of Acidic C--H Groups;369
1.11.1.1.1.5;31.42.1.1.5 Variation 5: Using Carbanions Prepared by Directed ortho-Metalation;371
1.11.1.1.1.6;31.42.1.1.6 Variation 6: Using Activated Silanes;373
1.11.1.1.1.7;31.42.1.1.7 Variation 7: By Miscellaneous Methods;373
1.11.1.1.2;31.42.1.2 Method 2: Synthesis by Nucleophilic Substitution with Phosphorus Nucleophiles;374
1.11.1.1.2.1;31.42.1.2.1 Variation 1: Using Phosphorus Nucleophiles Generated by Deprotonation of P--H Bonds;374
1.11.1.1.2.2;31.42.1.2.2 Variation 2: Using Phosphorus Nucleophiles Generated by Reduction of P--X Bonds (X = Halogen);376
1.11.1.1.2.3;31.42.1.2.3 Variation 3: Using Phosphorus Nucleophiles Generated by Reduction of Aryl--P Bonds;377
1.11.1.1.2.4;31.42.1.2.4 Variation 4: Using Neutral Phosphorus Nucleophiles in the Absence of Base;378
1.11.1.1.2.5;31.42.1.2.5 Variation 5: Using Silylphosphines;379
1.11.1.1.3;31.42.1.3 Method 3: Synthesis by Transition-Metal-Catalyzed Coupling Reactions;379
1.11.1.1.3.1;31.42.1.3.1 Variation 1: Reactions Catalyzed by Palladium Complexes;380
1.11.1.1.3.2;31.42.1.3.2 Variation 2: Reactions Catalyzed by Nickel Complexes;382
1.11.1.1.3.3;31.42.1.3.3 Variation 3: Reactions Catalyzed by Copper Complexes;384
1.11.1.1.3.4;31.42.1.3.4 Variation 4: Reactions Catalyzed by Other Transition-Metal Complexes;384
1.11.1.1.4;31.42.1.4 Method 4: Synthesis by Addition to Multiple Bonds;384
1.11.1.1.4.1;31.42.1.4.1 Variation 1: Reactions Involving Uncatalyzed Addition;385
1.11.1.1.4.2;31.42.1.4.2 Variation 2: Addition Reactions Mediated by Radical Initiators;386
1.11.1.1.4.3;31.42.1.4.3 Variation 3: Addition Reactions Catalyzed by Transition-Metal Complexes;387
1.11.1.1.4.4;31.42.1.4.4 Variation 4: Addition to Conjugated Alkenes;388
1.11.1.1.4.5;31.42.1.4.5 Variation 5: Addition to Carbonyl or Imino Groups;390
1.11.1.1.5;31.42.1.5 Method 5: Synthesis by Decomplexation of Metal–Phosphine Complexes;392
1.11.1.1.6;31.42.1.6 Method 6: Synthesis by Deprotection of Arylphosphine–Borane Complexes;394
1.11.1.1.7;31.42.1.7 Method 7: Synthesis by Reduction of Arylphosphine Sulfides;395
1.11.1.1.7.1;31.42.1.7.1 Variation 1: Using Raney Nickel;396
1.11.1.1.7.2;31.42.1.7.2 Variation 2: Using Radical Reagents;397
1.11.1.1.7.3;31.42.1.7.3 Variation 3: Using Phosphorus(III) Compounds;397
1.11.1.1.8;31.42.1.8 Method 8: Synthesis by Reduction of Arylphosphine Oxides;398
1.11.1.1.8.1;31.42.1.8.1 Variation 1: Using Silanes;399
1.11.1.1.8.2;31.42.1.8.2 Variation 2: Using Aluminum Hydrides;401
1.11.1.1.8.3;31.42.1.8.3 Variation 3: Using Titanium Complexes as Catalysts;404
1.11.1.1.8.4;31.42.1.8.4 Variation 4: Using Boranes;405
1.11.1.1.9;31.42.1.9 Method 9: Synthesis by Modification of a Parent Arylphosphine;406
1.11.1.1.9.1;31.42.1.9.1 Variation 1: Modification of a Functional Group;406
1.11.1.1.9.2;31.42.1.9.2 Variation 2: Modification of the Carbon Skeleton;409
1.11.1.2;31.42.2 Applications of Product Class 42 in Organic Synthesis;410
1.12;Volume 39: Sulfur, Selenium, and Tellurium;426
1.12.1;39.18 Product Class 18: Alkaneselenols;426
1.12.1.1;39.18.2 Alkaneselenols;426
1.12.1.1.1;39.18.2.1 Synthesis of Alkaneselenols;426
1.12.1.1.1.1;39.18.2.1.1 Method 1: Reaction of Alkylating Agents with Alkali Metal Selenides;426
1.12.1.1.1.2;39.18.2.1.2 Method 2: Reduction of Dialkyl Diselenides and Alkyl Selenocyanates;427
1.12.1.1.1.2.1;39.18.2.1.2.1 Variation 1: Reduction of Dialkyl Diselenides Mediated by Trialkyltin Hydrides: A Radical Route;428
1.12.1.1.1.2.2;39.18.2.1.2.2 Variation 2: Reduction of Dialkyl Diselenides with Hydrides;429
1.12.1.1.1.2.3;39.18.2.1.2.3 Variation 3: Reduction of Dialkyl Diselenides with Zinc under Biphasic Conditions;429
1.12.1.1.1.2.4;39.18.2.1.2.4 Variation 4: Reduction of Selenocyanates;430
1.12.1.1.1.3;39.18.2.1.3 Method 3: Reduction of Elemental Selenium with Alkyl Grignard or Alkyllithium Compounds Followed by Protonation;432
1.12.1.1.2;39.18.2.2 Applications of Alkaneselenols in Organic Synthesis;432
1.12.1.1.2.1;39.18.2.2.1 Method 1: Oxidation: Synthesis of Diselenides;432
1.12.1.1.2.2;39.18.2.2.2 Method 2: Reaction with Alkyl and Aryl Halides;433
1.12.1.1.2.3;39.18.2.2.3 Method 3: Nucleophilic Substitution of Alcohols and Enol Ethers;434
1.12.1.1.2.4;39.18.2.2.4 Method 4: Synthesis of Diselenoacetals;436
1.12.1.1.2.4.1;39.18.2.2.4.1 Variation 1: Diselenoacetal Formation Using Selenols and Protic Acids;436
1.12.1.1.2.4.2;39.18.2.2.4.2 Variation 2: Diselenoacetal Formation Using Selenols and Lewis Acids;437
1.12.1.1.2.5;39.18.2.2.5 Method 5: Michael-Type Addition Reactions;438
1.12.2;39.19 Product Class 19: Acyclic Alkaneselenolates;442
1.12.2.1;39.19.1.2 Alkaneselenolates of Group 1, 2, and 13–15 Metals;442
1.12.2.1.1;39.19.1.2.1 Arsenic Alkaneselenolates;442
1.12.2.1.1.1;39.19.1.2.1.1 Method 1: Reaction of a 2-Arsapropene with Methaneselenol;442
1.12.2.1.2;39.19.1.2.2 Silicon Alkaneselenolates;442
1.12.2.1.2.1;39.19.1.2.2.1 Method 1: Reaction of a Lithium Silaneselenolate with an Alkyl Halide;443
1.12.2.1.3;39.19.1.2.3 Germanium Alkaneselenolates;444
1.12.2.1.3.1;39.19.1.2.3.1 Method 1: Reaction of Selenols with Halogermanes;444
1.12.2.1.4;39.19.1.2.4 Tin Alkaneselenolates;445
1.12.2.1.4.1;39.19.1.2.4.1 Method 1: Reaction of Alkaneselenolates Generated In Situ with Chlorostannanes;445
1.12.2.1.5;39.19.1.2.5 Lead Alkaneselenolates;445
1.12.2.1.5.1;39.19.1.2.5.1 Method 1: Reaction of Sodium Selenolates with Lead(II) Acetate;446
1.12.2.1.6;39.19.1.2.6 Boron Alkaneselenolates;446
1.12.2.1.6.1;39.19.1.2.6.1 Method 1: Reaction of a Lithium Trihydroborate with Titanocene Pentaselenide;446
1.12.2.1.7;39.19.1.2.7 Aluminum Alkaneselenolates;447
1.12.2.1.8;39.19.1.2.8 Indium Alkaneselenolates;447
1.12.2.1.8.1;39.19.1.2.8.1 Method 1: Reaction of Indium(I) Iodide with Diselenides;448
1.12.2.1.9;39.19.1.2.9 Magnesium Alkaneselenolates;448
1.12.2.1.9.1;39.19.1.2.9.1 Method 1: Reaction of Grignard Reagents with Elemental Selenium;448
1.12.2.1.10;39.19.1.2.10 Lithium Alkaneselenolates;449
1.12.2.1.10.1;39.19.1.2.10.1 Synthesis of Lithium Alkaneselenolates;449
1.12.2.1.10.1.1;39.19.1.2.10.1.1 Method 1: Reduction of Dialkyl Diselenides;449
1.12.2.1.10.1.2;39.19.1.2.10.1.2 Method 2: Insertion of Elemental Selenium into a C--Li Bond;450
1.12.2.1.10.1.3;39.19.1.2.10.1.3 Method 3: Reaction of Lithium Enolates with Elemental Selenium;451
1.12.2.1.10.2;39.19.1.2.10.2 Applications of Lithium Alkaneselenolates in Organic Synthesis;451
1.12.2.1.10.2.1;39.19.1.2.10.2.1 Method 1: Nucleophilic Substitution of Leaving Groups;451
1.12.2.1.10.2.2;39.19.1.2.10.2.2 Method 2: Hydroselenation of Alkynes;453
1.12.2.1.11;39.19.1.2.11 Sodium Alkaneselenolates;454
1.12.2.1.11.1;39.19.1.2.11.1 Synthesis of Sodium Alkaneselenolates;454
1.12.2.1.11.1.1;39.19.1.2.11.1.1 Method 1: Deprotonation of Selenols;454
1.12.2.1.11.1.2;39.19.1.2.11.1.2 Method 2: Reduction of Diselenides and Selenocyanates;454
1.12.2.1.11.2;39.19.1.2.11.2 Applications of Sodium Alkaneselenolates in Organic Synthesis;455
1.12.2.1.11.2.1;39.19.1.2.11.2.1 Method 1: Nucleophilic Substitution of Leaving Groups;455
1.12.2.1.11.2.2;39.19.1.2.11.2.2 Method 2: Ring Opening of Cyclopropanes;456
1.12.2.1.12;39.19.1.2.12 Potassium Alkaneselenolates;456
1.12.2.1.12.1;39.19.1.2.12.1 Method 1: Reduction of Dialkyl Diselenides Using Hydrazine Hydrate and Potassium Hydroxide;457
1.12.2.1.13;39.19.1.2.13 Cesium Alkaneselenolates;457
1.12.2.1.13.1;39.19.1.2.13.1 Method 1: Reaction of Acyl Selenides with Cesium Carbonate and Amines;457
1.13;Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines;462
1.13.1;40.1 Product Class 1: Amino Compounds;462
1.13.1.1;40.1.1.5.4.5 Substitution on the Amine Nitrogen;462
1.13.1.1.1;40.1.1.5.4.5.1 Dealkylation Reactions of Amines;462
1.13.1.1.1.1;40.1.1.5.4.5.1.1 Method 1: The von Braun Reaction with Cyanogen Bromide;462
1.13.1.1.1.2;40.1.1.5.4.5.1.2 Method 2: Photolytic Dealkylation;464
1.13.1.1.1.3;40.1.1.5.4.5.1.3 Method 3: Reductive Cleavage of the C--N Bond;469
1.13.1.1.1.4;40.1.1.5.4.5.1.4 Method 4: Sequential N-Demethylation–N-Acylation with Palladium(II) Acetate and Acetic Anhydride;471
1.13.1.1.1.5;40.1.1.5.4.5.1.5 Method 5: Cleavage of the C--N Bond Using Solid-Supported Reagents;473
1.13.1.1.1.6;40.1.1.5.4.5.1.6 Method 6: The Polonovski Reaction;475
1.13.1.1.1.7;40.1.1.5.4.5.1.7 Method 7: Reaction with Dialkyl Azodicarboxylates;479
1.13.1.1.2;40.1.1.5.4.5.2 Replacement of Oxygen Functionalities;479
1.13.1.1.2.1;40.1.1.5.4.5.2.1 Method 1: Reactions of Ammonia with Alcoholic Hydroxy Groups;480
1.13.1.1.2.2;40.1.1.5.4.5.2.2 Method 2: Reactions of Primary or Secondary Amines with Alcoholic Hydroxy Groups;483
1.13.1.1.2.3;40.1.1.5.4.5.2.3 Method 3: Direct Amination with Sulfonamides;489
1.13.1.1.3;40.1.1.5.4.5.3 Replacement of Nitrogen Functionalities;490
1.13.1.1.3.1;40.1.1.5.4.5.3.1 Method 1: Condensation of Primary Amines;491
1.14;Author Index;498
1.15;Abbreviations;528
1.16;List of All Volumes;534
Abstracts
1.1.5 Organometallic Complexes of Nickel
R. M. Stolley and J. Louie This chapter is an update to the earlier Science of Synthesis contribution describing the organometallic complexes of nickel. This update highlights the applications of organometallic complexes of nickel, building on the general trends of organonickel chemistry described in the previous contribution. Within this update, particular emphasis is placed on nickel-mediated oxidative and reductive coupling reactions, carbon—heteroatom bond-forming reactions, annulation, and strong-bond activation reactions. This update focuses mainly on literature from 2003 to 2012. Keywords: nickel · reductive coupling · oxidative coupling · heterocoupling · oxidative addition · homocoupling · cyclization · carbon—heteroatom bonds · allylic · alkyne · 1,3-dienes · C—H bond activation · insertion · isomerization · carboxylation 1.2.6 High-Valent Palladium in Catalysis
P. Chen, G. Liu, K. M. Engle, and J.-Q. Yu This chapter documents recent studies of palladium-catalyzed organic transformations in which a high-valent palladium intermediate is involved in the formation of a new chemical bond. The interest in these reactions has focused mainly on C—H activation and the difunctionalization of alkenes. Keywords: high-valent palladium complexes · C—H activation · alkenes · difunctionalization · oxidation · reductive elimination 4.4.5 Product Subclass 5: Disilanes and Oligosilanes
C. Marschner and J. Baumgartner This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the preparation and synthetic use of disilanes. This update is extended by coverage of synthetically useful oligosilanes. Keywords: silicon compounds · disilanes · oligosilanes · silylation · protecting groups · radicals · Si—Si bonds · Si—C bonds 4.4.9 Product Subclass 9: Silylzinc Reagents
A. Durand, I. Hemeon, and R. D. Singer This chapter is a revision of the contribution on silylzinc reagents published in 2001, which describes the preparation and application of triorganosilylzinc compounds. Homo silylzinc reagents, such as bis(triphenylsilyl)zinc(II) [(Ph3Si)2Zn] and lithium tris[dimethyl(phenyl)silyl]zincate [(PhMe2Si)3ZnLi], as well as hetero or mixed silylzinc reagents, such as lithium [dimethyl(phenyl)silyl]dimethylzincate [(PhMe2Si)ZnMe2Li] and (biphenyl-2,2'-diolato)(tert-butyl)[dimethyl(phenyl)silyl]zincates {M2Zn(t-Bu)[(2-OC6H4)2](SiMe2Ph); M = Li, MgCl}, are prepared with relative ease and are utilized in a variety of synthetic applications. These reagents react under a variety of conditions with unsaturated organic substrates to afford synthetically useful triorganosilylated species. Keywords: bis(triorganosilyl)zincs · dialkyl(triorganosilyl)zincates · dianionic silylzincates · catalysis · vinylsilanes · 3-(triorganosilyl) ketones · allylsilanes 4.4.21.13 Silylamines
A. Kawachi This review, which updates the original Section 4.4.21, published in 2001, discusses the preparation of silylamines bearing dicoordinate, tricoordinate, tetracoordinate, and pentacoordinate silicon centers. Reaction of chlorosilanes with primary or secondary amines is one of the most conventional methods for the syntheses of these compounds. Reactions of halosilanes with lithium amides, lithium ß-diketiminates, and other metalated nitrogen species are also useful. A more recent advance is the dehydrogenative condensation of hydrosilanes with primary or secondary amines using transition-metal or Lewis acid catalysts. Keywords: silylamines · halosilanes · hydrosilanes · amines · diamines · amino alcohols · amides · dehydrogenative condensation · dehydrochlorination · transition-metal-catalyzed reactions 4.4.22 Product Subclass 22: Silyl Phosphines
M. Hayashi This chapter is a revision of the earlier Science of Synthesis contribution, published in 2001, describing methods for the synthesis of silyl phosphines and their applications in organic synthesis. In contrast to the earlier contribution, in which the applications of silyl phosphines were described only very briefly, in this revision the applications of silyl phosphines are classified and summarized and include recent improvements, especially with regard to P—C bond formation. Keywords: silyl phosphines · phosphines · phosphorus compounds · phosphaalkenes · phosphaalkynes · phosphorus heterocycles · silyl ethers 4.4.41.8 ß-Silyl Carbonyl Compounds
F. Nahra and O. Riant ß-Silyl carbonyl or carboxy compounds are attractive synthetic intermediates. They are important building blocks for various synthetic transformations, thus allowing the construction of more complex molecules. The position of the silyl group far from the carbonyl group allows for numerous transformations on the latter, giving access in some cases to complex natural products. Moreover, the installation of the silyl group on these intermediates in an enantioselective manner has been the subject of numerous investigations, mainly due to its subsequent influence on the adjacent addition of other groups. Finally, the possibility of converting these silyl groups into various other functional groups renders these intermediates valuable tools in the organic chemist's arsenal. Keywords: ß-silyl carbonyl · silylmetalation · hydrosilylation · silyl migration · asymmetric addition 17.5.4 Seven-Membered Hetarenes with Two or More Heteroatoms
J. Zhang This update deals with important general methods for the synthesis of diazepines, benzodiazepines, and dibenzodiazepines that have not been discussed in the earlier Science of Synthesis Section 17.5 or in Houben–Weyl, Vol. E 9d. Literature published up to 2011 is reviewed. Keywords: diazepines · benzodiazepines · dibenzodiazepines · diazepinones · ring closure · condensation reactions · copper-catalyzed cyclization · palladium-catalyzed cyclization 18.1.7 Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes
J. Podlech This chapter is an update to the earlier Science of Synthesis contribution on the preparation of cyanogen halides, cyanates, thiocyanates, sulfonyl cyanides, and cyanamides, as well as their application in organic synthesis. It focuses on the literature published in the period 2003–2012. Keywords: cyanogen halides · thiocyanates · sulfonyl cyanides · cyanamides · cyanation · thiocyanation 18.11.10 Seleno- and Tellurocarbonic Acids and Derivatives
K. Shimada This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of seleno- and tellurocarbonic acids and their derivatives. It focuses on the literature published in the period 2002–2012. Keywords: bis(dimethylaluminum) selenide · N,N-dialkylcyanamides · N,N-dimethylselenocarbamoyl chloride · elemental selenium · isoselenocyanates · potassium selenocyanate · selenocarbamates · selenosemicarbazides · selenosemicarbazones · selenoureas · sodium hydroselenide · Viehe's salt 31.42 Product Class 42: Arylphosphines and Derivatives
M. Stankevic and K. M. Pietrusiewicz This manuscript is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of arylphosphines. Classical routes to arylphosphines involve the formation of the required C—P bonds from P-electrophilic, P-nucleophilic, and P-radical precursors. Newer methods are based on hydrophosphination and coupling processes catalyzed by transition-metal complexes. Methods involving reductions and decomplexations of tetracoordinate phosphorus precursors and modifications of the carbon skeleton in existing arylphosphines are also included. Keywords: aryl compounds · C—P bonds · coupling reactions · deoxygenation · desulfurization · nucleophilic substitution · nucleophilic addition · phosphines · phosphorus compounds · radical addition · transition metals 39.18.2 Alkaneselenols
C. Santi This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkaneselenols. It focuses on the literature published in the period 2001–2012; some applications of alkaneselenols in organic synthesis are also...