Banert / Carreira / Marek | Science of Synthesis Knowledge Updates 2013 Vol. 4 | E-Book | sack.de
E-Book

E-Book, Englisch, 500 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Banert / Carreira / Marek Science of Synthesis Knowledge Updates 2013 Vol. 4

E-Book, Englisch, 500 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-198381-7
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board,together with
the volume editors and authors, is constantly reviewing the whole field of
synthetic organic chemistry as presented in Science of Synthesis and evaluating
significant developments in synthetic methodology. Four annual volumes updating
content across all categories ensure that you always have access to
state-of-the-art synthetic methodology.
Banert / Carreira / Marek Science of Synthesis Knowledge Updates 2013 Vol. 4 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2013/4;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;16
1.6;Table of Contents;18
1.7;Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);32
1.7.1;2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides;32
1.7.1.1;2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides;32
1.7.1.1.1;2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions;32
1.7.1.1.1.1;2.12.16.1.1 Rare-Earth(II) Complexes;32
1.7.1.1.1.1.1;2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes;33
1.7.1.1.1.1.1.1;2.12.16.1.1.1.1 Method 1: Salt Metathesis;33
1.7.1.1.1.1.2;2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis;34
1.7.1.1.1.1.2.1;2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes;34
1.7.1.1.1.1.2.2;2.12.16.1.1.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes;35
1.7.1.1.1.2;2.12.16.1.2 Cyclooctatetraene–Rare-Earth(III) Complexes;36
1.7.1.1.1.2.1;2.12.16.1.2.1 Synthesis of Cyclooctatetraene–Rare-Earth(III) Complexes;36
1.7.1.1.1.2.1.1;2.12.16.1.2.1.1 Method 1: Salt Metathesis;36
1.7.1.1.1.2.2;2.12.16.1.2.2 Applications of Cyclooctatetraene–Rare-Earth(III) Complexes in Organic Synthesis;37
1.7.1.1.1.2.2.1;2.12.16.1.2.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes;37
1.7.1.1.1.2.2.2;2.12.16.1.2.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes;38
1.7.1.1.1.3;2.12.16.1.3 Bis(boratabenzene)yttrium(III) Complexes;39
1.7.1.1.1.3.1;2.12.16.1.3.1 Synthesis of Bis(boratabenzene)yttrium(III) Complexes;39
1.7.1.1.1.3.1.1;2.12.16.1.3.1.1 Method 1: Salt Metathesis;39
1.7.1.1.1.3.2;2.12.16.1.3.2 Applications of Bis(boratabenzene)yttrium(III) Complexes in Organic Synthesis;41
1.7.1.1.1.3.2.1;2.12.16.1.3.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkenes;41
1.7.1.1.1.4;2.12.16.1.4 Bis(pentamethylcyclopentadienyl)– and Modified Bis(cyclopentadienyl)–Rare-Earth(III) Complexes;41
1.7.1.1.1.4.1;2.12.16.1.4.1 Synthesis of Bis(pentamethylcyclopentadienyl)– and Modified Bis(cyclopentadienyl)–Rare-Earth(III) Complexes;42
1.7.1.1.1.4.1.1;2.12.16.1.4.1.1 Method 1: Salt Metathesis;42
1.7.1.1.1.4.1.1.1;2.12.16.1.4.1.1.1 Variation 1: Two-Step Procedures;42
1.7.1.1.1.4.1.1.2;2.12.16.1.4.1.1.2 Variation 2: Single-Pot Procedures;47
1.7.1.1.1.4.1.2;2.12.16.1.4.1.2 Method 2: Alkane and Arene Elimination;49
1.7.1.1.1.4.1.2.1;2.12.16.1.4.1.2.1 Variation 1: Hydride and Aryl Complexes;49
1.7.1.1.1.4.1.2.2;2.12.16.1.4.1.2.2 Variation 2: Polymer-Bound Complexes;50
1.7.1.1.1.4.2;2.12.16.1.4.2 Applications of Bis(pentamethylcyclopentadienyl)– and Modified Bis(cyclopentadienyl)–Rare-Earth(III) Complexes in Organic Synthesis;51
1.7.1.1.1.4.2.1;2.12.16.1.4.2.1 Method 1: Catalytic Hydroamination Reactions of Monoalkynes;51
1.7.1.1.1.4.2.1.1;2.12.16.1.4.2.1.1 Variation 1: Intramolecular Reaction;51
1.7.1.1.1.4.2.1.2;2.12.16.1.4.2.1.2 Variation 2: Intermolecular Reaction;53
1.7.1.1.1.4.2.2;2.12.16.1.4.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Monoalkenes;55
1.7.1.1.1.4.2.2.1;2.12.16.1.4.2.2.1 Variation 1: Catalysis by Non-Polymer-Bound Complexes ;55
1.7.1.1.1.4.2.2.2;2.12.16.1.4.2.2.2 Variation 2: Catalysis by Polymer-Bound Complexes;61
1.7.1.1.1.4.2.3;2.12.16.1.4.2.3 Method 3: Catalytic Intermolecular Hydroamination Reaction of Monoalkenes;62
1.7.1.1.1.4.2.3.1;2.12.16.1.4.2.3.1 Variation 1: Reaction of Monosubstituted Alkenes;62
1.7.1.1.1.4.2.3.2;2.12.16.1.4.2.3.2 Variation 2: Reaction of Methylenecyclopropanes;63
1.7.1.1.1.4.2.4;2.12.16.1.4.2.4 Method 4: Catalytic Intramolecular Hydroamination Reaction of 1,2-Dienes;64
1.7.1.1.1.4.2.5;2.12.16.1.4.2.5 Method 5: Catalytic Hydroamination Reaction of 1,3-Dienes;66
1.7.1.1.1.4.2.6;2.12.16.1.4.2.6 Method 6: Catalytic Intermolecular Hydroamination Reaction of Di- and Trivinylarenes;68
1.7.1.1.1.4.2.7;2.12.16.1.4.2.7 Method 7: Catalytic Hydroamination Reaction of Dialkynes, Alkenylalkynes, and Dialkenes Other than Divinylarenes and 1,2- and 1,3-Dienes;69
1.7.1.1.1.5;2.12.16.1.5 Modified Mono(cyclopentadienyl)–Rare-Earth(III) Complexes;74
1.7.1.1.1.5.1;2.12.16.1.5.1 Synthesis of Modified Mono(cyclopentadienyl)–Rare-Earth(III) Complexes;74
1.7.1.1.1.5.1.1;2.12.16.1.5.1.1 Method 1: Salt Metathesis;74
1.7.1.1.1.5.1.1.1;2.12.16.1.5.1.1.1 Variation 1: Two-Step Procedures;74
1.7.1.1.1.5.1.1.2;2.12.16.1.5.1.1.2 Variation 2: Single-Pot Procedures;75
1.7.1.1.1.5.1.2;2.12.16.1.5.1.2 Method 2: Silylamine or Alkane Elimination;76
1.7.1.1.1.5.2;2.12.16.1.5.2 Applications of Modified Mono(cyclopentadienyl)–Rare-Earth(III) Complexes in Organic Synthesis;79
1.7.1.1.1.5.2.1;2.12.16.1.5.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Monoalkenes;79
1.7.1.1.1.5.2.2;2.12.16.1.5.2.2 Method 2: Catalytic Intermolecular Hydroamination Reaction of Alkynes and Monoalkenes;83
1.7.1.1.1.5.2.3;2.12.16.1.5.2.3 Method 3: Catalytic Intramolecular Hydroamination Reaction of 1,2- and 1,3-Dienes;84
1.7.1.1.1.6;2.12.16.1.6 Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands;86
1.7.1.1.1.6.1;2.12.16.1.6.1 Synthesis of Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands;87
1.7.1.1.1.6.1.1;2.12.16.1.6.1.1 Method 1: Salt Metathesis/Alkane Elimination;87
1.7.1.1.1.6.2;2.12.16.1.6.2 Applications of Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands in Organic Synthesis;89
1.7.1.1.1.6.2.1;2.12.16.1.6.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Monoalkenes;89
1.7.1.1.1.7;2.12.16.1.7 Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1–3);90
1.7.1.1.1.7.1;2.12.16.1.7.1 Synthesis of Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1–3);91
1.7.1.1.1.7.1.1;2.12.16.1.7.1.1 Method 1: Salt Metathesis;91
1.7.1.1.1.7.1.2;2.12.16.1.7.1.2 Method 2: Silylamine or Alkane Elimination;93
1.7.1.1.1.7.1.3;2.12.16.1.7.1.3 Method 3: Alkylation;97
1.7.1.1.1.7.1.4;2.12.16.1.7.1.4 Method 4: Ligand Abstraction;98
1.7.1.1.1.7.2;2.12.16.1.7.2 Applications of Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1–3) in Organic Synthesis;99
1.7.1.1.1.7.2.1;2.12.16.1.7.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes, Monoalkenes, and 1,3-Dienes;99
1.7.1.1.1.7.2.1.1;2.12.16.1.7.2.1.1 Variation 1: Catalysis by Isolated Complexes;99
1.7.1.1.1.7.2.1.2;2.12.16.1.7.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ;103
1.7.1.1.1.8;2.12.16.1.8 Rare-Earth(III) Complexes Bearing X2-Type Ligands;105
1.7.1.1.1.8.1;2.12.16.1.8.1 Synthesis of Rare-Earth(III) Complexes Bearing X2-Type Ligands;106
1.7.1.1.1.8.1.1;2.12.16.1.8.1.1 Method 1: Salt Metathesis;106
1.7.1.1.1.8.1.2;2.12.16.1.8.1.2 Method 2: Silylamine, Alkane, or Arene Elimination;108
1.7.1.1.1.8.1.2.1;2.12.16.1.8.1.2.1 Variation 1: From Isolated Homoleptic Complexes;108
1.7.1.1.1.8.1.2.2;2.12.16.1.8.1.2.2 Variation 2: From Homoleptic Complexes Generated In Situ;113
1.7.1.1.1.8.2;2.12.16.1.8.2 Applications of Rare-Earth(III) Complexes Bearing X2-Type Ligands in Organic Synthesis;116
1.7.1.1.1.8.2.1;2.12.16.1.8.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes, Alkenes, and Dienes;116
1.7.1.1.1.8.2.1.1;2.12.16.1.8.2.1.1 Variation 1: Catalysis by Isolated Complexes;116
1.7.1.1.1.8.2.1.2;2.12.16.1.8.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ;121
1.7.1.1.1.8.2.2;2.12.16.1.8.2.2 Method 2: Catalytic Intermolecular Hydroamination Reaction of Alkenes;126
1.7.1.1.1.9;2.12.16.1.9 Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2);127
1.7.1.1.1.9.1;2.12.16.1.9.1 Synthesis of Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) ;127
1.7.1.1.1.9.1.1;2.12.16.1.9.1.1 Method 1: Salt Metathesis;127
1.7.1.1.1.9.1.2;2.12.16.1.9.1.2 Method 2: Amine or Alkane Elimination;129
1.7.1.1.1.9.1.2.1;2.12.16.1.9.1.2.1 Variation 1: From Isolated Homoleptic Complexes;129
1.7.1.1.1.9.1.2.2;2.12.16.1.9.1.2.2 Variation 2: From Homoleptic Complexes Generated In Situ;133
1.7.1.1.1.9.2;2.12.16.1.9.2 Applications of Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) in Organic Synthesis;135
1.7.1.1.1.9.2.1;2.12.16.1.9.2.1 Method 1: Catalytic Intramolecular Hydroamination Reactions of Alkynes and Alkenes;135
1.7.1.1.1.9.2.1.1;2.12.16.1.9.2.1.1 Variation 1: Catalysis by Isolated Complexes;135
1.7.1.1.1.9.2.1.2;2.12.16.1.9.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ;138
1.7.1.1.1.10;2.12.16.1.10 Rare-Earth(III) Complexes Bearing L3-Type Ligands;142
1.7.1.1.1.10.1;2.12.16.1.10.1 Synthesis of Rare-Earth(III) Complexes Bearing L3-Type Ligands;143
1.7.1.1.1.10.1.1;2.12.16.1.10.1.1 Method 1: Ligand Substitution;143
1.7.1.1.1.10.1.2;2.12.16.1.10.1.2 Method 2: Alkane Elimination;144
1.7.1.1.1.10.2;2.12.16.1.10.2 Applications of Rare-Earth(III) Complexes Bearing L3-Type Ligands in Organic Synthesis;145
1.7.1.1.1.10.2.1;2.12.16.1.10.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkenes;145
1.7.1.1.1.11;2.12.16.1.11 Homoleptic Tris(silylamido)– and Trialkyl–Rare-Earth(III) Complexes;146
1.7.1.1.1.11.1;2.12.16.1.11.1 Synthesis of Homoleptic Tris(silylamido)– and Trialkyl–Rare-Earth(III) Complexes;146
1.7.1.1.1.11.1.1;2.12.16.1.11.1.1 Method 1: Salt Metathesis;146
1.7.1.1.1.11.2;2.12.16.1.11.2 Applications of Homoleptic Tris(silylamido)– and Trialkyl–Rare-Earth(III) Complexes in Organic Synthesis;149
1.7.1.1.1.11.2.1;2.12.16.1.11.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Alkenes;149
1.8;Volume 18: Four Carbon--Heteroatom Bonds: X--C==X, X==C==X, X2C==X, CX4;158
1.8.1;18.3 Product Class 3: Carbonic Acid Halides;158
1.8.1.1;18.3.7 Carbonic Acid Halides;158
1.8.1.1.1;18.3.7.1 Carbonic Dihalides;158
1.8.1.1.1.1;18.3.7.1.1 Synthesis of Carbonic Dihalides;158
1.8.1.1.1.1.1;18.3.7.1.1.1 Method 1: Synthesis by Halogen Exchange;158
1.8.1.1.1.1.1.1;18.3.7.1.1.1.1 Variation 1: Fluorination of Phosgene;158
1.8.1.1.1.1.1.2;18.3.7.1.1.1.2 Variation 2: Bromination of Phosgene;159
1.8.1.1.1.1.2;18.3.7.1.1.2 Method 2: Synthesis by Oxidation of Tetrahalomethanes;160
1.8.1.1.1.1.2.1;18.3.7.1.1.2.1 Variation 1: Reaction of Trichlorofluoromethane with Sulfur Trioxide ;160
1.8.1.1.1.1.2.2;18.3.7.1.1.2.2 Variation 2: Reaction of Tribromofluoromethane with Sulfur Trioxide;160
1.8.1.1.1.1.2.3;18.3.7.1.1.2.3 Variation 3: Reaction of Tetrabromomethane with Sulfuric Acid;161
1.8.1.1.1.1.3;18.3.7.1.1.3 Method 3: Synthesis by Reaction of Bromine Trifluoride with Carbon Monoxide;162
1.8.1.1.2;18.3.7.2 Haloformate Esters;162
1.8.1.1.2.1;18.3.7.2.1 Synthesis of Haloformate Esters;162
1.8.1.1.2.1.1;18.3.7.2.1.1 Method 1: Synthesis by Halogen Exchange;163
1.8.1.1.2.1.1.1;18.3.7.2.1.1.1 Variation 1: Reaction of Chloroformates with Sodium Fluoride and a Crown Ether;163
1.8.1.1.2.1.1.2;18.3.7.2.1.1.2 Variation 2: Reaction of Chloroformates with an Organotin Fluoride Reagent;163
1.8.1.1.2.1.1.3;18.3.7.2.1.1.3 Variation 3: Reaction of Chloroformates with Thallium(I) Fluoride;164
1.8.1.1.2.1.1.4;18.3.7.2.1.1.4 Variation 4: Reaction of Chloroformates with Sodium Iodide;167
1.8.1.1.2.1.2;18.3.7.2.1.2 Method 2: Synthesis by Conversion of Alcohols;168
1.8.1.1.2.1.2.1;18.3.7.2.1.2.1 Variation 1: Reaction with Carbonyl Difluoride and Potassium Fluoride ;168
1.8.1.1.2.1.2.2;18.3.7.2.1.2.2 Variation 2: Reaction with Carbonyl Chloride Fluoride;169
1.8.1.1.2.1.2.3;18.3.7.2.1.2.3 Variation 3: Reaction with Carbonyl Bromide Fluoride;171
1.8.1.1.2.1.2.4;18.3.7.2.1.2.4 Variation 4: Reaction with Carbonyl Dibromide;171
1.8.1.1.2.1.3;18.3.7.2.1.3 Method 3: Synthesis by Reaction of Alkyl Carbamates with Sodium Nitrite and Hydrogen Fluoride–Pyridine Complex;172
1.8.1.1.2.1.4;18.3.7.2.1.4 Method 4: Synthesis by Reaction of Cyclic Ethers with Carbonyl Chloride Fluoride;173
1.8.1.1.2.1.5;18.3.7.2.1.5 Method 5: Synthesis by Reaction of Aldehydes and Ketones with Carbonyl Difluoride;174
1.8.1.1.2.1.6;18.3.7.2.1.6 Method 6: Synthesis by Reaction of Trifluoromethyl Hypofluorite with Carbon Monoxide;174
1.8.1.1.3;18.3.7.3 Halothioformate Esters, Halocarbonylsulfenyl Halides, and Halocarbonyl Disulfides;175
1.8.1.1.3.1;18.3.7.3.1 Synthesis of Halothioformate Esters, Halocarbonylsulfenyl Halides, and Halocarbonyl Disulfides;175
1.8.1.1.3.1.1;18.3.7.3.1.1 Method 1: Synthesis by Halogen Exchange;175
1.8.1.1.3.1.1.1;18.3.7.3.1.1.1 Variation 1: Reaction of Chlorothioformate S-Esters with Hydrogen Fluoride;176
1.8.1.1.3.1.1.2;18.3.7.3.1.1.2 Variation 2: Reaction of Chlorocarbonylsulfenyl Chloride with Antimony(III) Fluoride;176
1.8.1.1.3.1.1.3;18.3.7.3.1.1.3 Variation 3: Reaction of Fluorocarbonylsulfenyl Chloride with Bromotrimethylsilane;177
1.8.1.1.3.1.1.4;18.3.7.3.1.1.4 Variation 4: Reaction of Fluorocarbonylsulfenyl Bromide with Boron Trichloride ;177
1.8.1.1.3.1.1.5;18.3.7.3.1.1.5 Variation 5: Reaction of Chlorocarbonylsulfenyl Chloride with Boron Tribromide;177
1.8.1.1.3.1.2;18.3.7.3.1.2 Method 2: Synthesis by Reaction of Sulfenyl Chlorides with Sulfuric Acid;178
1.8.1.1.3.1.3;18.3.7.3.1.3 Method 3: Synthesis by Reaction of Sulfenyl Chlorides with O-Alkyl Chlorothioformates;178
1.8.1.1.3.1.4;18.3.7.3.1.4 Method 4: Synthesis by Iron-Catalyzed Rearrangement of O-Alkyl Chlorothioformates;179
1.8.1.1.4;18.3.7.4 Carbamoyl Halides;180
1.8.1.1.4.1;18.3.7.4.1 Synthesis of Carbamoyl Halides;180
1.8.1.1.4.1.1;18.3.7.4.1.1 Method 1: Synthesis by Reaction of Secondary Amines ;180
1.8.1.1.4.1.1.1;18.3.7.4.1.1.1 Variation 1: Reaction with Carbonyl Difluoride;180
1.8.1.1.4.1.1.2;18.3.7.4.1.1.2 Variation 2: Reaction with Dibromodifluoromethane Followed by Hydrolysis;181
1.8.1.1.4.1.2;18.3.7.4.1.2 Method 2: Synthesis by Reaction of Amides or Lactams;182
1.8.1.1.4.1.2.1;18.3.7.4.1.2.1 Variation 1: Reaction with Carbonyl Difluoride;182
1.8.1.1.4.1.3;18.3.7.4.1.3 Method 3: Synthesis by Reaction of C==N Containing Compounds;183
1.8.1.1.4.1.3.1;18.3.7.4.1.3.1 Variation 1: Reaction of Isocyanates, Imines, and Hydrogen Cyanide with Carbonyl Difluoride and Cesium Fluoride;183
1.8.1.1.4.1.3.2;18.3.7.4.1.3.2 Variation 2: Reaction of Isothiocyanates with Carbonyl Difluoride, Mercury(II) Fluoride, and Cesium Fluoride;185
1.8.1.1.4.1.3.3;18.3.7.4.1.3.3 Variation 3: Reaction of Isocyanates with Poly(hydrogen fluoride)–Pyridine Complex;186
1.8.1.1.4.1.4;18.3.7.4.1.4 Method 4: Synthesis by Reaction of N,N-Disubstituted Formamides with a Phosphorus(III) Halide Followed by a Thionyl Halide;187
1.8.1.1.4.1.5;18.3.7.4.1.5 Method 5: Synthesis by Reaction of N,N-Disubstituted Formamides with Sulfur Tetrafluoride Followed by Hydrolysis;187
1.8.1.1.4.1.6;18.3.7.4.1.6 Method 6: Synthesis by Reaction of Bis(perfluoroalkyl)(trifluoromethyl)amines with Oleum;188
1.8.1.1.4.1.7;18.3.7.4.1.7 Method 7: Synthesis by Reaction of S-Alkyl Thiocarbamates with Halogens;189
1.8.1.1.4.1.8;18.3.7.4.1.8 Method 8: Synthesis by Reaction of 3-Aryl-4-halosydnones with Hydrogen Halides;190
1.8.2;18.4 Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues;192
1.8.2.1;18.4.45 Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues;192
1.8.2.1.1;18.4.45.1 Acyclic Carbonate Diesters;192
1.8.2.1.1.1;18.4.45.1.1 Synthesis of Acyclic Carbonate Diesters;192
1.8.2.1.1.1.1;18.4.45.1.1.1 Method 1: Reactions of Alcohols and Phenols with Derivatives of Carbonic Acid;192
1.8.2.1.1.1.1.1;18.4.45.1.1.1.1 Variation 1: Alkoxycarbonylation of Alcohols and Phenols;192
1.8.2.1.1.1.1.2;18.4.45.1.1.1.2 Variation 2: Coupling Using 1,1'-Carbonyldiimidazole;194
1.8.2.1.1.1.1.3;18.4.45.1.1.1.3 Variation 3: Transcarbonylation Using Dialkyl Carbonates;195
1.8.2.1.1.1.2;18.4.45.1.1.2 Method 2: Reaction of Formate Derivatives with Carbonyl Compounds;197
1.8.2.1.1.1.2.1;18.4.45.1.1.2.1 Variation 1: Addition of Formate Derivatives to Aldehydes;197
1.8.2.1.1.1.2.2;18.4.45.1.1.2.2 Variation 2: Reaction of Enolates with Formate Derivatives;199
1.8.2.1.1.1.3;18.4.45.1.1.3 Method 3: Addition of Carbon Dioxide;200
1.8.2.1.1.1.4;18.4.45.1.1.4 Method 4: Addition of Carbon Monoxide;201
1.8.2.1.1.1.5;18.4.45.1.1.5 Method 5: Alkylation of Metal Carbonates;201
1.8.2.1.1.1.6;18.4.45.1.1.6 Method 6: Rearrangements;202
1.8.2.1.1.1.7;18.4.45.1.1.7 Method 7: Reaction of Difluoro(diiodo)methane with Alcohols and Phenols;204
1.8.2.1.1.2;18.4.45.1.2 Applications of Acyclic Carbonate Diesters in Organic Synthesis;204
1.8.2.1.1.2.1;18.4.45.1.2.1 Method 1: Application of Dimethyl Carbonate as a Solvent in Green Chemistry;204
1.8.2.1.1.2.2;18.4.45.1.2.2 Method 2: Application in Transition-Metal-Catalyzed Cross-Coupling Reactions;204
1.8.2.1.1.2.3;18.4.45.1.2.3 Method 3: Use as a Photoremovable Protecting Group ;206
1.8.2.1.2;18.4.45.2 Cyclic Carbonate Diesters;206
1.8.2.1.2.1;18.4.45.2.1 Synthesis of Cyclic Carbonate Diesters;206
1.8.2.1.2.1.1;18.4.45.2.1.1 Method 1: Transfer of the Carbonyl Group to Diols;206
1.8.2.1.2.1.1.1;18.4.45.2.1.1.1 Variation 1: Coupling Using Bis(trichloromethyl) Carbonate (Triphosgene);206
1.8.2.1.2.1.1.2;18.4.45.2.1.1.2 Variation 2: Coupling Using 1,1'-Carbonyldiimidazole;207
1.8.2.1.2.1.1.3;18.4.45.2.1.1.3 Variation 3: Transcarbonylation Using Dimethyl Carbonate;207
1.8.2.1.2.1.1.4;18.4.45.2.1.1.4 Variation 4: One-Pot Conversion of Alkenes;208
1.8.2.1.2.1.2;18.4.45.2.1.2 Method 2: Gold(I)-Catalyzed Cyclization of 1,6-Enynes;210
1.8.2.1.2.1.3;18.4.45.2.1.3 Method 3: Iodocarbonate Cyclization of 1,5-Enynes;211
1.8.2.1.2.1.4;18.4.45.2.1.4 Method 4: Addition to Carbon Dioxide;211
1.8.2.1.2.1.4.1;18.4.45.2.1.4.1 Variation 1: Reaction with Propargylic Alcohols;211
1.8.2.1.2.1.4.2;18.4.45.2.1.4.2 Variation 2: Reaction with Oxiranes;213
1.8.2.1.2.1.5;18.4.45.2.1.5 Method 5: Addition to Carbon Monoxide;214
1.8.2.1.2.2;18.4.45.2.2 Applications of Cyclic Carbonate Diesters in Organic Synthesis;215
1.8.2.1.2.2.1;18.4.45.2.2.1 Method 1: Application as a Solvent in Green Chemistry;215
1.8.2.1.3;18.4.45.3 Bis(trihalomethyl) Carbonates;216
1.8.2.1.3.1;18.4.45.3.1 Synthesis of Bis(trihalomethyl) Carbonates;216
1.8.2.1.3.2;18.4.45.3.2 Applications of Bis(trihalomethyl) Carbonates in Organic Synthesis;217
1.8.2.1.3.2.1;18.4.45.3.2.1 Method 1: Synthesis of Acid Chlorides Using Bis(trichloromethyl) Carbonate;217
1.8.2.1.3.2.1.1;18.4.45.3.2.1.1 Variation 1: Chlorination of Carboxylic Acids;217
1.8.2.1.3.2.1.2;18.4.45.3.2.1.2 Variation 2: Chlorocarbonylation of Diazo Compounds;217
1.8.2.1.3.2.2;18.4.45.3.2.2 Method 2: Chlorination of Alcohols Using Bis(trichloromethyl) Carbonate;218
1.8.2.1.3.2.3;18.4.45.3.2.3 Method 3: Chlorocarbonylation of Hydroxy and Thiol Groups Using Bis-(trichloromethyl) Carbonate;219
1.8.2.1.3.2.4;18.4.45.3.2.4 Method 4: Preparation of Isocyanates from Amines Using Bis(trichloromethyl) Carbonate;221
1.8.2.1.3.2.5;18.4.45.3.2.5 Method 5: Preparation of Isocyanides Using Bis(trichloromethyl) Carbonate;222
1.8.2.1.4;18.4.45.4 Dicarbonate Diesters;223
1.8.2.1.4.1;18.4.45.4.1 Synthesis of Dicarbonate Diesters;223
1.8.2.1.4.2;18.4.45.4.2 Applications of Dicarbonate Diesters in Organic Synthesis;223
1.8.2.1.4.2.1;18.4.45.4.2.1 Method 1: Conversion of Alcohols or Phenols into Unsymmetrical Carbonates;223
1.8.2.1.4.2.2;18.4.45.4.2.2 Method 2: Decarboxylative Esterification of Carboxylic Acids;223
1.8.2.1.5;18.4.45.5 Tricarbonate Diesters;224
1.8.2.1.5.1;18.4.45.5.1 Synthesis of Tricarbonate Diesters;224
1.8.2.1.5.2;18.4.45.5.2 Applications of Tricarbonate Diesters in Organic Synthesis;224
1.8.2.1.5.2.1;18.4.45.5.2.1 Method 1: Synthesis of Oxazolidine-2,5-diones Using Di-tert-butyl Tricarbonate;224
1.8.2.1.6;18.4.45.6 Carbamic Carbonic Anhydride O,N-Diesters;225
1.8.2.1.6.1;18.4.45.6.1 Synthesis of Carbamic Carbonic Anhydride O,N-Diesters;225
1.8.2.1.7;18.4.45.7 Carbonic Sulfonic Anhydride Esters;225
1.8.2.1.7.1;18.4.45.7.1 Synthesis of Carbonic Sulfonic Anhydride Esters;226
1.8.2.1.7.2;18.4.45.7.2 Applications of Carbonic Sulfonic Anhydride Esters in Organic Synthesis;226
1.8.2.1.7.2.1;18.4.45.7.2.1 Method 1: Synthesis of Carbonates and Thiocarbonates via Mesyl Carbonates;226
1.8.2.1.8;18.4.45.8 O-Amino Carbonate Derivatives;226
1.8.2.1.8.1;18.4.45.8.1 Synthesis of O-Amino Carbonate Derivatives;227
1.8.2.1.9;18.4.45.9 Metal Complexes of Thiocarbonic Acid O-Monoesters;227
1.8.2.1.9.1;18.4.45.9.1 Synthesis of Metal Complexes of Thiocarbonic Acid O-Monoesters;228
1.8.2.1.10;18.4.45.10 Acyclic Thiocarbonate O,S-Diesters;228
1.8.2.1.10.1;18.4.45.10.1 Synthesis of Acyclic Thiocarbonate O,S-Diesters;228
1.8.2.1.10.1.1;18.4.45.10.1.1 Method 1: Reaction of Thiols with Derivatives of Carbonic Acid;228
1.8.2.1.10.1.1.1;18.4.45.10.1.1.1 Variation 1: Alkoxycarbonylation of Thiols;228
1.8.2.1.10.1.1.2;18.4.45.10.1.1.2 Variation 2: Reaction Using Bis(trichloromethyl) Carbonate;228
1.8.2.1.10.1.1.3;18.4.45.10.1.1.3 Variation 3: Reaction Using Other tert-Butoxycarbonyl Reagents;229
1.8.2.1.10.1.2;18.4.45.10.1.2 Method 2: Reductive Cleavage of Disulfides;229
1.8.2.1.11;18.4.45.11 Cyclic Thiocarbonate O,S-Diesters;230
1.8.2.1.11.1;18.4.45.11.1 Synthesis of Cyclic Thiocarbonate O,S-Diesters;230
1.8.2.1.11.1.1;18.4.45.11.1.1 Method 1: Substitution of 1,1'-Carbonyldiimidazole;230
1.8.2.1.11.1.2;18.4.45.11.1.2 Method 2: Hydrolysis of Oxathiolan-2-imine Derivatives ;231
1.8.2.1.11.1.3;18.4.45.11.1.3 Method 3: Addition to Carbon Monoxide;232
1.8.2.1.11.1.4;18.4.45.11.1.4 Method 4: Palladium-Catalyzed Cyclocarbonylation of 2-Sulfanylphenols;233
1.8.2.1.12;18.4.45.12 Thiocarbonate O,S-Diester S-Oxides;233
1.8.2.1.12.1;18.4.45.12.1 Synthesis of Thiocarbonate O,S-Diester S-Oxides;233
1.8.2.1.12.1.1;18.4.45.12.1.1 Method 1: Oxidation of Thiocarbonate O,S-Diesters;233
1.8.2.1.13;18.4.45.13 Alkoxycarbonyl Thiocyanates;233
1.8.2.1.13.1;18.4.45.13.1 Synthesis of Alkoxycarbonyl Thiocyanates;234
1.8.2.1.13.1.1;18.4.45.13.1.1 Method 1: Reaction of (Methoxycarbonyl)sulfenyl Chloride with Silver Cyanide;234
1.8.2.1.14;18.4.45.14 S-Sulfanyl Derivatives of Thiocarbonate O-Esters;234
1.8.2.1.14.1;18.4.45.14.1 Synthesis of S-Sulfanyl Derivatives of Thiocarbonate O-Esters;234
1.8.2.1.14.1.1;18.4.45.14.1.1 Method 1: Reactions of (Methoxycarbonyl)sulfenyl Chloride;234
1.8.2.1.14.1.1.1;18.4.45.14.1.1.1 Variation 1: With Silver(I) Thiocyanate;234
1.8.2.1.14.1.1.2;18.4.45.14.1.1.2 Variation 2: With Bis(trifluoromethanethiolato)mercury(II);234
1.8.2.1.15;18.4.45.15 S-Amino Thiocarbonate O-Esters;235
1.8.2.1.15.1;18.4.45.15.1 Synthesis of S-Amino Thiocarbonate O-Esters;235
1.8.2.1.15.1.1;18.4.45.15.1.1 Method 1: Hydrolysis of an Isocyanate Derivative;235
1.8.2.1.16;18.4.45.16 Acyclic Dithiocarbonate S,S-Diesters;235
1.8.2.1.16.1;18.4.45.16.1 Synthesis of Acyclic Dithiocarbonate S,S-Diesters;235
1.8.2.1.16.1.1;18.4.45.16.1.1 Method 1: Reaction of Thiols with Carbon Dioxide;235
1.8.2.1.17;18.4.45.17 Cyclic Dithiocarbonate S,S-Diesters;236
1.8.2.1.17.1;18.4.45.17.1 Synthesis of Cyclic Dithiocarbonate S,S-Diesters;236
1.8.2.1.17.1.1;18.4.45.17.1.1 Method 1: Reaction of Dithiols with 1,1'-Carbonyldiimidazole;236
1.8.2.1.17.1.2;18.4.45.17.1.2 Method 2: Oxidation of Cyclic Trithiocarbonates;237
1.8.2.1.17.1.3;18.4.45.17.1.3 Method 3: Reaction of an Epoxide and Carbon Disulfide under High Pressure;237
1.8.2.1.17.2;18.4.45.17.2 Applications of Cyclic Dithiocarbonate S,S-Diesters in Organic Synthesis;237
1.8.2.1.17.2.1;18.4.45.17.2.1 Method 1: Ring Enlargement of 1,3-Dithian-2-one with Lithium Acetylides;237
1.8.2.1.17.2.2;18.4.45.17.2.2 Method 2: Synthesis of Tetrathiafulvalenes;238
1.8.2.1.18;18.4.45.18 Acyclic Selenocarbonate O,Se-Diesters;238
1.8.2.1.18.1;18.4.45.18.1 Synthesis of Acyclic Selenocarbonate O,Se-Diesters;238
1.8.2.1.18.1.1;18.4.45.18.1.1 Method 1: Two-Step Sequence Using Derivatives of Carbonic Acid and Diphenyl Diselenide;239
1.8.2.1.18.1.1.1;18.4.45.18.1.1.1 Variation 1: Using 1,1'-Carbonyldiimidazole;239
1.8.2.1.18.1.1.2;18.4.45.18.1.1.2 Variation 2: Using Bis(trichloromethyl) Carbonate;239
1.8.2.1.18.1.2;18.4.45.18.1.2 Method 2: Reaction of Lithium Enolates with Selenium/Carbon Monoxide;239
1.8.2.1.19;18.4.45.19 Acyclic Tellurocarbonate O,Te-Diesters;240
1.8.2.1.19.1;18.4.45.19.1 Synthesis of Acyclic Tellurocarbonate O,Te-Diesters;240
1.9;Volume 26: Ketones;248
1.9.1;26.9 Product Class 9: Enones;248
1.9.1.1;26.9.5 Enones;248
1.9.1.1.1;26.9.5.1 ß,.-Unsaturated Ketones;248
1.9.1.1.1.1;26.9.5.1.1 Synthesis of ß,.-Unsaturated Ketones;248
1.9.1.1.1.1.1;26.9.5.1.1.1 Method 1: Oxidation of Homoallylic Alcohols;248
1.9.1.1.1.1.2;26.9.5.1.1.2 Method 2: Allylation of Acyl Compounds and Nitriles by Allyl Derivatives;250
1.9.1.1.1.1.2.1;26.9.5.1.1.2.1 Variation 1: Allylation of Acyl Chlorides by Allylsilanes and Acyl Cyanides by Allyl Bromides;250
1.9.1.1.1.1.2.2;26.9.5.1.1.2.2 Variation 2: Transition-Metal-Catalyzed Allylation of Acylsilanes and Acylstannanes by Allyl Trifluoroacetates, and Acylzirconocenes by Allyl Halides and 4-Toluenesulfonates;251
1.9.1.1.1.1.2.3;26.9.5.1.1.2.3 Variation 3: Barbier-Type Allylation of Nitriles by Allyl Bromides;253
1.9.1.1.1.1.3;26.9.5.1.1.3 Method 3: Tin- and Boron-Mediated Allylation of a-Halo Aryl Ketones by Allylstannanes;254
1.9.1.1.1.1.4;26.9.5.1.1.4 Method 4: Alkenylation of Enol Ethers by Alkenyl and Alkynyl Reagents;256
1.9.1.1.1.1.4.1;26.9.5.1.1.4.1 Variation 1: Alkenylation of Silyl Enol Ethers by an Alkenylbismuth Reagent;256
1.9.1.1.1.1.4.2;26.9.5.1.1.4.2 Variation 2: Gallium-Mediated Alkenylation of Silyl Enol Ethers by (Trimethylsilyl)acetylenes;256
1.9.1.1.1.1.5;26.9.5.1.1.5 Method 5: Transition-Metal-Catalyzed Alkenylation of Ketones and Ketone Derivatives by Alkenyl Halides and Trifluoromethanesulfonates;257
1.9.1.1.1.1.5.1;26.9.5.1.1.5.1 Variation 1: Palladium-Catalyzed Intramolecular Alkenylation of Ketones by Alkenyl Halides;258
1.9.1.1.1.1.5.2;26.9.5.1.1.5.2 Variation 2: Palladium- and Nickel-Catalyzed Intermolecular Alkenylation of Ketones by Alkenyl Halides and Trifluoromethanesulfonates;262
1.9.1.1.1.1.5.3;26.9.5.1.1.5.3 Variation 3: Palladium-Catalyzed Alkenylation of Enol Acetates by Alkenyl Bromides;264
1.9.1.1.1.1.5.4;26.9.5.1.1.5.4 Variation 4: Palladium-Catalyzed Alkenylation of Enol Ethers by Alkenyl Halides and Trifluoromethanesulfonates;264
1.9.1.1.1.1.6;26.9.5.1.1.6 Method 6: Nickel-Catalyzed Enantioselective Alkenylation of a-Bromo Ketones by Alkenylzirconocenes;266
1.9.1.1.1.1.7;26.9.5.1.1.7 Method 7: Ruthenium-Catalyzed Hydroacylation of Dienes by Aldehydes and Alcohols;267
1.9.1.1.1.1.8;26.9.5.1.1.8 Method 8: Ruthenium-Catalyzed Hydration Dimerization of Ethynylbenzenes;269
1.9.1.1.1.1.9;26.9.5.1.1.9 Method 9: Alkenylation of Ketones by Terminal Alkynes ;270
1.9.1.1.1.1.9.1;26.9.5.1.1.9.1 Variation 1: Tin-Mediated Alkenylation of Ketones by Terminal Alkynes;270
1.9.1.1.1.1.9.2;26.9.5.1.1.9.2 Variation 2: Superbase-Mediated Alkenylation of Ketones by Ethynylbenzenes;271
1.9.2;26.12 Product Class 12: Seven-Membered and Larger-Ring Cyclic Ketones;274
1.9.2.1;26.12.1 Synthesis of Product Class 12;277
1.9.2.1.1;26.12.1.1 Method 1: Intramolecular Cyclization Reactions ;277
1.9.2.1.1.1;26.12.1.1.1 Variation 1: Cyclization of Suberic Acid and Related Ester Derivatives;277
1.9.2.1.1.2;26.12.1.1.2 Variation 2: Ziegler Cyclization of Dinitriles;279
1.9.2.1.1.3;26.12.1.1.3 Variation 3: Acyloin Condensation of Diesters;280
1.9.2.1.1.4;26.12.1.1.4 Variation 4: Intramolecular Michael Addition Reactions ;282
1.9.2.1.1.5;26.12.1.1.5 Variation 5: Intramolecular Radical Cyclization Reactions;284
1.9.2.1.1.6;26.12.1.1.6 Variation 6: Intramolecular Wittig/Horner–Wadsworth–Emmons and Related Reactions;286
1.9.2.1.1.7;26.12.1.1.7 Variation 7: Ring-Closing Metathesis;288
1.9.2.1.1.8;26.12.1.1.8 Variation 8: Transition-Metal-Catalyzed Cross-Coupling Reactions;293
1.9.2.1.2;26.12.1.2 Method 2: Cycloaddition Reactions;294
1.9.2.1.2.1;26.12.1.2.1 Variation 1: [5 + 2]-Cycloaddition Reactions;294
1.9.2.1.2.2;26.12.1.2.2 Variation 2: [4 + 3] Cycloaddition Reactions;301
1.9.2.1.2.3;26.12.1.2.3 Variation 3: [6 + 4] Cycloadditions of Tropones with Dienes;305
1.9.2.1.3;26.12.1.3 Method 3: Ring Enlargement;308
1.9.2.1.3.1;26.12.1.3.1 Variation 1: Pinacol and Pinacol-Type Rearrangements;308
1.9.2.1.3.2;26.12.1.3.2 Variation 2: Ring Enlargement of [4.1.0] Bicyclic Ring Systems ;315
1.9.2.1.3.3;26.12.1.3.3 Variation 3: Ring Enlargement of [3.2.0] Bicyclic Ring Systems ;318
1.9.2.1.3.4;26.12.1.3.4 Variation 4: Ring Enlargement of [10.3.0] Bicyclic Ring Systems;320
1.9.2.1.3.5;26.12.1.3.5 Variation 5: Electrocyclic Ring Expansions;321
1.9.3;26.13 Product Class 13: a-Aryl and a-Hetaryl Ketones;332
1.9.3.1;26.13.1 Synthesis of Product Class 13;332
1.9.3.1.1;26.13.1.1 Arylation of Ketones and Ketone Enolates by Aryl and Hetaryl Halides;332
1.9.3.1.1.1;26.13.1.1.1 Method 1: Arylation of Ketones Using the SNAr Mechanism;332
1.9.3.1.1.2;26.13.1.1.2 Method 2: Arylation of Ketones and Ketone Enolates Using the SRN1 Mechanism;333
1.9.3.1.1.3;26.13.1.1.3 Method 3: Palladium-Catalyzed Arylation of Ketones;337
1.9.3.1.1.3.1;26.13.1.1.3.1 Variation 1: Nonenantioselective Arylation;337
1.9.3.1.1.3.2;26.13.1.1.3.2 Variation 2: Enantioselective Arylation;365
1.9.3.1.1.4;26.13.1.1.4 Method 4: Nickel-Catalyzed Arylation of Ketones;370
1.9.3.1.1.4.1;26.13.1.1.4.1 Variation 1: Nonenantioselective Arylation;370
1.9.3.1.1.4.2;26.13.1.1.4.2 Variation 2: Enantioselective Arylation;371
1.9.3.1.2;26.13.1.2 Arylation of ß-Diketones by Aryl Halides;374
1.9.3.1.2.1;26.13.1.2.1 Method 1: Copper-Catalyzed Arylation;374
1.9.3.1.3;26.13.1.3 Arylation of Enol Ethers by Aryl and Hetaryl Halides;375
1.9.3.1.3.1;26.13.1.3.1 Method 1: UV-Mediated Arylation Using the SN1 Mechanism;375
1.9.3.1.3.2;26.13.1.3.2 Method 2: Palladium-Catalyzed Arylation;376
1.9.3.1.3.2.1;26.13.1.3.2.1 Variation 1: Nonstereoselective Arylation;376
1.9.3.1.3.2.2;26.13.1.3.2.2 Variation 2: Stereoselective Arylation;382
1.9.3.1.4;26.13.1.4 Arylation of Enol Esters by Aryl and Hetaryl Halides;385
1.9.3.1.4.1;26.13.1.4.1 Method 1: Palladium-Catalyzed Arylation;385
1.9.3.1.5;26.13.1.5 Arylation of Ketones by Aryl Sulfonates;388
1.9.3.1.5.1;26.13.1.5.1 Method 1: Palladium-Catalyzed Arylation;388
1.9.3.1.5.1.1;26.13.1.5.1.1 Variation 1: Nonenantioselective Arylation;388
1.9.3.1.5.1.2;26.13.1.5.1.2 Variation 2: Enantioselective Arylation;392
1.9.3.1.5.2;26.13.1.5.2 Method 2: Nickel-Catalyzed Enantioselective Arylation;393
1.9.3.1.6;26.13.1.6 Arylation of Enol Acetates by Arenediazonium Salts;394
1.9.3.1.6.1;26.13.1.6.1 Method 1: Base-Mediated Arylation;394
1.9.3.1.6.2;26.13.1.6.2 Method 2: Ruthenium-Catalyzed Arylation Using Blue Light;395
1.9.3.1.7;26.13.1.7 Arylation of a-Halo Ketones by Arylboron Reagents;396
1.9.3.1.7.1;26.13.1.7.1 Method 1: Base-Mediated Arylation by 9-Phenyl-9-borabicyclo[3.3.1]nonane;396
1.9.3.1.7.2;26.13.1.7.2 Method 2: Nickel-Catalyzed Arylation by Arylboronic Acids;397
1.9.3.1.8;26.13.1.8 Carbonylative Arylation of Benzyl Halides by Arylboron Reagents;398
1.9.3.1.8.1;26.13.1.8.1 Method 1: Palladium-Catalyzed Carbonylative Arylation by Arylboronic Acids;398
1.9.3.1.8.2;26.13.1.8.2 Method 2: Palladium-Catalyzed Carbonylative Arylation by Aryltrifluoroborates;399
1.9.3.1.9;26.13.1.9 Arylation of Ketones by Arylbismuth Reagents;400
1.9.3.1.9.1;26.13.1.9.1 Method 1: Multiple Arylation by Triphenylbismuth(V) Carbonate;400
1.9.3.1.10;26.13.1.10 Arylation of Ketones and a-Chloro Ketones by Nitroarenes Using Nucleophilic Aromatic Substitution Mechanisms;401
1.9.3.1.10.1;26.13.1.10.1 Method 1: Arylation of Ketones Using the Oxidative Nucleophilic Substitution of Hydrogen Mechanism;401
1.9.3.1.10.2;26.13.1.10.2 Method 2: Arylation of a-Chloro Ketones Using the Vicarious Nucleophilic Substitution Mechanism;402
1.9.3.2;26.13.2 Conclusions;403
1.10;Volume 32: X--Ene--X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene--Hal, and Ene--O Compounds;406
1.10.1;32.4 Product Class 4: Haloalkenes;406
1.10.1.1;32.4.3 Haloalkenes;406
1.10.1.1.1;32.4.3.1 Fluoroalkenes;406
1.10.1.1.1.1;32.4.3.1.1 Synthesis from Aldehydes and Ketones;406
1.10.1.1.1.1.1;32.4.3.1.1.1 Method 1: Reaction with Fluoro Sulfones;406
1.10.1.1.1.1.2;32.4.3.1.1.2 Method 2: Reaction with a-Fluoroalkanoic Esters;417
1.10.1.1.1.1.2.1;32.4.3.1.1.2.1 Variation 1: Base-Mediated Addition to Carbonyl Compounds;417
1.10.1.1.1.1.2.2;32.4.3.1.1.2.2 Variation 2: Reductive Addition to Carbonyl Compounds;418
1.10.1.1.1.1.2.3;32.4.3.1.1.2.3 Variation 3: Palladium-Catalyzed Addition to Aldehydes;420
1.10.1.1.1.2;32.4.3.1.2 Synthesis from Allenes and Alkynes;420
1.10.1.1.1.2.1;32.4.3.1.2.1 Method 1: Hydroxyfluorination of Allenes;420
1.10.1.1.1.2.2;32.4.3.1.2.2 Method 2: Transition-Metal-Catalyzed Fluorination of Alkynes and Allenes;422
1.10.1.1.1.2.2.1;32.4.3.1.2.2.1 Variation 1: Transition-Metal-Catalyzed Hydrofluorination;422
1.10.1.1.1.2.2.2;32.4.3.1.2.2.2 Variation 2: Transition-Metal-Catalyzed Electrophilic Fluorination;424
1.10.1.1.1.3;32.4.3.1.3 Synthesis from Allyl Fluorides;426
1.10.1.1.1.3.1;32.4.3.1.3.1 Method 1: Nucleophilic or Reductive Displacement of Allylic gem-Difluorides;426
1.10.1.1.1.4;32.4.3.1.4 Synthesis from Other Fluoroalkenes;429
1.10.1.1.1.4.1;32.4.3.1.4.1 Method 1: Synthesis by Reductive Defluorination;429
1.10.1.1.1.4.1.1;32.4.3.1.4.1.1 Variation 1: Transition-Metal-Mediated Hydrodefluorination;429
1.10.1.1.1.4.1.2;32.4.3.1.4.1.2 Variation 2: Defluorination of Silylfluorostyrenes;430
1.10.1.1.1.4.2;32.4.3.1.4.2 Method 2: Palladium-Catalyzed Cross Coupling of Vinyl Fluorides;432
1.10.1.1.1.4.2.1;32.4.3.1.4.2.1 Variation 1: Stille-Type Cross Coupling;432
1.10.1.1.1.4.2.2;32.4.3.1.4.2.2 Variation 2: Suzuki-Type Cross Coupling;434
1.10.1.1.1.4.2.3;32.4.3.1.4.2.3 Variation 3: Negishi-Type Cross Coupling;435
1.10.1.1.1.4.2.4;32.4.3.1.4.2.4 Variation 4: Direct C-H Fluoroalkenylation;436
1.10.1.1.1.4.2.5;32.4.3.1.4.2.5 Variation 5: Palladium-Catalyzed C-F Activation;437
1.10.1.1.1.4.2.6;32.4.3.1.4.2.6 Variation 6: Mizoroki–Heck-Type Cross Coupling;437
1.10.1.1.1.4.2.7;32.4.3.1.4.2.7 Variation 7: Palladium-Catalyzed Carbonylation;438
1.10.1.1.1.4.3;32.4.3.1.4.3 Method 3: Reductive Cyclization of 1,1-Difluoro-1,6-enynes;439
1.10.1.1.1.4.4;32.4.3.1.4.4 Method 4: Addition of (Fluorovinyl)silanes to Carbonyl Compounds;439
1.10.1.1.1.4.5;32.4.3.1.4.5 Method 5: Synthesis from (Fluoroalkenyl)iodonium Salts;440
1.10.1.1.1.5;32.4.3.1.5 Synthesis from Methylene- and Vinylidenecyclopropanes;442
1.10.1.1.1.5.1;32.4.3.1.5.1 Method 1: Ring Opening of Methylene- and Vinylidenecyclopropanes;442
1.10.1.1.1.6;32.4.3.1.6 Synthesis from 2-Fluoroalkanols;442
1.10.1.1.1.7;32.4.3.1.7 Synthesis from Thiocarboxylic Acid Derivatives;443
1.11;Volume 34: Fluorine;448
1.11.1;34.9 Product Class 9: ß-Fluoro Alcohols;448
1.11.1.1;34.9.2 ß-Fluoro Alcohols;448
1.11.1.1.1;34.9.2.1 Method 1: Synthesis by Ring Opening of Epoxides;449
1.11.1.1.1.1;34.9.2.1.1 Variation 1: With Boron Trifluoride–Diethyl Ether Complex;449
1.11.1.1.1.2;34.9.2.1.2 Variation 2: With Tetrafluoroboric Acid–Diethyl Ether Complex;451
1.11.1.1.1.3;34.9.2.1.3 Variation 3: With Benzoyl Fluoride in the Presence of a Chiral Lewis Acid;455
1.11.1.1.2;34.9.2.2 Method 2: Synthesis by Reduction of a-Fluoro Carbonyl Compounds;458
1.11.1.1.2.1;34.9.2.2.1 Variation 1: With Achiral Reducing Agents;458
1.11.1.1.2.2;34.9.2.2.2 Variation 2: With Chiral Reducing Agents;463
1.11.1.1.3;34.9.2.3 Method 3: Synthesis by Fluoromethylation of Carbonyl Compounds;466
1.11.1.1.3.1;34.9.2.3.1 Variation 1: With 2-Fluoro-1,3-benzodithiole 1,1,3,3-Tetraoxide;467
1.11.1.1.3.2;34.9.2.3.2 Variation 2: With Fluorobis(phenylsulfonyl)methane;469
1.11.1.1.4;34.9.2.4 Method 4: Synthesis by Hydroxyfluorination of Alkenes;470
1.11.1.1.4.1;34.9.2.4.1 Variation 1: With Selectfluor in Water;470
1.11.1.1.4.2;34.9.2.4.2 Variation 2: With Selectfluor in the Presence of a Chiral Phosphoric Acid;471
1.12;Author Index;476
1.13;Abbreviations;498
1.14;List of All Volumes;504


2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides (Update 2013)
J. Hannedouche 2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions
This section deals with the syntheses and catalytic applications of rare-earth complexes with oxidation state +2 or +3 in the direct addition of an amine onto an unactivated carbon–carbon triple or double bond, the so-called hydroamination reaction. The term “rare earth” refers to the group 3 metal elements including scandium, yttrium, and the lanthanide series from lanthanum to lutetium, and is abbreviated Ln. This section is not intended to comprehensively review all title complexes of the product subclasses but only those which find applications as catalysts in the hydroamination reaction. Typical complexes of the product subclass contain at least one kinetically labile, s-bonded bis(trimethylsilyl)amido, bis(dimethylsilyl)amido, diisopropylamido, bis(trimethylsilyl)methyl, trimethylsilyl, or methyl ligand which, under the hydroamination reaction conditions, is promptly protonated by the amino substrate to generate a new metal amide species. This species will further react with the alkyne or the alkene functionality through a s-insertive or noninsertive mechanism to deliver the hydroamination product.[1–6] With few exceptions, the relative reactivity of rare-earth complexes in hydroamination is poorly influenced by the nature of the s-bonded ligand [except for the less basic bis(dimethylsilyl)amido ligand][7,8] and is mainly governed by the ionic size of the metal and the steric/electronic properties of the ancillary ligand(s). The metal ionic radius increases going from scandium (the smallest) to lanthanum (the largest), and from lutetium to cerium.[9] Due to the higher reactivity and electron density of alkynes relative to alkenes, the hydroamination of alkynes is more readily achieved than that of alkenes. As a general trend, the rate of cyclohydroamination reaction is consistent with classical, stereoelectronically controlled cyclization processes; strictly speaking, the rate of formation of five-membered rings is higher than that of six- and, to a higher extent, seven-membered rings. Almost all of the complexes described in this product class should be synthesized, handled, and stored under an inert atmosphere using Schlenk or glovebox techniques. All solvents should be dried and degassed prior to use. With some exceptions, most of the catalytic applications are conducted in an NMR tube under inert atmosphere, and the reported yields are determined by NMR spectroscopy or gas chromatography using an internal standard. The hydroamination reactions are performed in noncoordinative aliphatic or aromatic solvents. The relevant literature up until mid-2012 has been covered. 2.12.16.1.1 Rare-Earth(II) Complexes
Rare-earth complexes in oxidation state +2 are much less widely explored for catalytic hydroamination than those in the +3 oxidation state despite there being convenient routes to synthesize such lower-oxidation-state complexes. The most successful approach to these divalent complexes is salt metathesis of tetrahydrofuran-solvated ytterbium(II), europium(II), and samarium(II) iodide with potassium reagents. Although poorly investigated, ytterbium(II) and samarium(II) complexes nevertheless demonstrate the ability to catalyze the intramolecular hydroamination of alkynes and alkenes. Under the catalytic conditions, oxidation of the divalent lanthanide complexes to trivalent species is postulated. 2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes 2.12.16.1.1.1.1 Method 1: Salt Metathesis Tetrahydrofuran-solvated europium(II) and ytterbium(II) iodide are reacted with potassium complex 1 and potassium hexamethyldisilazanide in a 1:1:1 molar ratio (? Scheme 1).[10] After removal of potassium iodide by filtration and crystallization, bis(tetrahydrofuran)-solvated {[7-(isopropylimino)cyclohepta-1,3,5-trienyl]amido}ytterbium(II) 2 (Ln = Yb) and its europium(II) analogue are obtained as tiny brown (36% yield) and red crystals (17% yield), respectively. The use of iodide and potassium reagents in the course of the syntheses avoids coordination of lighter alkali halides such as lithium chloride. An analogous procedure is applied for the preparation of bis(phosphorimidoyl)-methanide–ytterbium(II) iodide complex 4 as red crystals from potassium salt 3.[11] Complexes 2 and 4 are characterized by standard analytical and spectroscopic techniques, and their solid-state structures have been established by single-crystal X-ray diffraction. Solid-state analysis of complex 4 reveals that the ytterbium center is six coordinated with a long methanide carbon—metal bond. Bis(?5-pentamethylcyclopentadienyl)bis(tetrahydrofuran)samarium(II) (5) is prepared by a metathetic reaction between diiodobis(tetrahydrofuran)samarium(II) and potassium pentamethylcyclopentadienide.[12] Recrystallization from a tetrahydrofuran solution affords large purple crystals of a disolvate. X-ray crystallographic analysis of complex 5 confirms the structure typical of bent metallocenes. ? Scheme 1 Syntheses of Ytterbium(II), Europium(II), and Organosamarium(II) Complexes[10–12] Ln Yield (%) Ref Eu 17 [10] Yb 36 [10] [Bis(trimethylsilyl)amido]{isopropyl[7-(isopropylimino)cyclohepta-1,3,5-trienyl]amido}bis(tetrahydrofuran)ytterbium(II)(2, Ln = Yb); Typical Procedure:[10] THF was condensed at -196 °C onto a mixture of YbI2(THF)2 (0.5 mmol), complex 1 (0.121 g, 0.5 mmol), and KHMDS (0.100 g, 0.5 mmol). The mixture was then stirred for 36 h at rt. The red soln was filtered to remove KI, and then the solvent was removed under reduced pressure. Finally, the remaining powder was washed with pentane and crystallized (THF/pentane 1:3) to give tiny brown crystals; yield: 0.110 g (36%). Bis(?5-pentamethylcyclopentadienyl)bis(tetrahydrofuran)samarium(II) (5):[12] K(Cp*) (5.43 g, 31.2 mmol) was added to a stirred soln of SmI2(THF)2 (7.78 g, 14.2 mmol) in THF (75 mL) in a 125-mL Erlenmeyer flask. The color of the soln rapidly changed from blue-green to purple as off-white solids (KI) were formed. After 4 h at rt, the THF was removed by rotary evaporation and toluene (100 mL) was added. The resulting soln of product 5 with suspended potassium salts was stirred vigorously for 10 h and then filtered. The solvent was removed from the filtrate by rotary evaporation, leaving solid (Cp*)2Sm(THF)n (1 = n = 2). The degree of solvation was conveniently monitored by integration of the absorptions in the NMR spectrum in benzene-d6. Dissolving this solid in THF and then removing the solvent by rotary evaporation gave product 5; yield: 5.95 g (74%). Recrystallization (sat. THF soln at 30 °C, cooled to -25 °C overnight) gave large purple crystals; yield: 5.52 g in two crops (69%). 2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis 2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes Well-defined [bis(phosphorimidoyl)methanido]ytterbium(II) iodide complex 4 (see ? Section 2.12.16.1.1.1.1) is applied as catalyst for the cyclohydroamination of pent-4-yn-1-amine and 5-phenylpent-4-yn-1-amine under mild to harsh conditions. In the presence of catalytic amounts of complex 4, pent-4-yn-1-amine and 5-phenylpent-4-yn-1-amine undergo highly regioselective cyclization to give 3,4-dihydro-2H-pyrrole derivatives 6 as the sole product (? Scheme 2). The best turnover frequency is reached with 2.8 mol% of complex 4 for the reaction of pent-4-yn-1-amine at 120 °C. Sluggish activity is observed at room temperature. A color change of the reaction mixture from red to yellow at the initial stage of the catalysis indicates in situ oxidation of ytterbium(II) to ytterbium(III). ? Scheme 2 Catalytic Cyclohydroamination of Pent-4-yn-1-amine and 5-Phenylpent-4-yn-1-amine[11] R1 mol% of 4 Conditions TOFa (h-1) Yieldb (%) Ref H 2.8 120 °C, 3 h 11.9 >95 [11] H 1.4 60 °C, 192 h 0.22 60 [11] Ph 5.3 120 °C, 6 h 3.15 >95 [11] Ph 5.3 60 °C, 108 h 0.14 80 [11] a TOF = turnover frequency. b Determined by 1H NMR spectroscopy. 3,4-Dihydro-2H-pyrroles 6; General Procedure:[11] Tetrahydrofuran-solvated...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.