E-Book, Englisch, Band 57, 262 Seiten, eBook
Reihe: Progress in Probability
E-Book, Englisch, Band 57, 262 Seiten, eBook
Reihe: Progress in Probability
ISBN: 978-3-0348-7891-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Fractal Sets and Measures.- Markov Operators and Semifractals.- On Various Multifractal Spectra.- One-Dimensional Moran Sets and the Spectrum of Schrödinger Operators.- 2. Fractals and Dynamical Systems.- Small-scale Structure via Flows.- Hausdorff Dimension of Hyperbolic Attractors in
$$
{\mathbb{R}^3}$$.- The Exponent of Convergence of Kleinian Groups; on a Theorem of Bishop and Jones.- Lyapunov Exponents Are not Rigid with Respect to Arithmetic Subsequences.- 3. Stochastic Processes and Random fractals.- Some Topics in the Theory of Multiplicative Chaos.- Intersection Exponents and the Multifractal Spectrum for Measures on Brownian Paths.- Additive Lévy Processes: Capacity and Hausdorff Dimension.- 4. Fractal Analysis in Euclidean Space.- The Fractal Laplacian and Multifractal Quantities.- Geometric Representations of Currents and Distributions.- Variational Principles and Transmission Conditions for Fractal Layers.- 5. Harmonic Analysis on Fractals.- Function Spaces and Stochastic Processes on Fractals.- A Dirichlet Form on the Sierpinski Gasket, Related Function Spaces, and Traces.- Spectral Zeta Function of Symmetric Fractals.