Baldwin | Peptide Solvation and H-bonds | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 72, 312 Seiten, Web PDF

Reihe: Advances in Protein Chemistry

Baldwin Peptide Solvation and H-bonds

E-Book, Englisch, Band Volume 72, 312 Seiten, Web PDF

Reihe: Advances in Protein Chemistry

ISBN: 978-0-08-046356-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Volume 72, Peptide Solvation and H-bonds, addresses the role of peptide backbone solvation in the energetics of protein folding. Particular attention is focused on modeling and computation. This volume will be of particular interest to biophysicists and structural biologists. - Challenges the longstanding and basic assumptions of structural biology - Discusses how to solve the problem of protein structure prediction - Addresses the quantitation of the energetics of folding
Baldwin Peptide Solvation and H-bonds jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover page;1
2;Contents;6
3;New Directions in the Study of Peptide H-Bonds and.Peptide Solvation;10
4;Chapter 1: Potential Functions for Hydrogen Bonds in Protein Structure Prediction and Design;14
4.1;I. Introduction;15
4.2;II. Physical Mechanism of Hydrogen Bond Formation;17
4.3;III. Main Approaches to Modeling Hydrogen Bonds in Biomolecular Simulations;19
4.3.1;A. Potentials Derived from Hydrogen Bonding Geometries Observed in Crystal Structures;19
4.3.2;B. Molecular Mechanics: Comparison with the Structure-Derived, Orientation-Dependent Potential;22
4.3.3;C. Quantum Mechanics: Comparison with Molecular Mechanics and the Structure-Derived Potential;25
4.4;IV. Applications of Hydrogen Bonding Potentials;33
4.4.1;A. Protein Structure Prediction and Refinement;33
4.4.2;B. Prediction of Protein-Protein Interfaces;37
4.4.3;C. Protein Design;40
4.5;V. Conclusions and Perspectives;43
4.6;References;45
5;Chapter 2: Backbone-Backbone H-Bonds Make Context-Dependent Contributions to Protein Folding Kinetics and Thermodynamics: Lessons from Amide-to-Ester Mutations;52
5.1;I. Introduction;53
5.2;II. Nomenclature and Synthesis of Amide-to-Ester Mutants;55
5.3;III. Esters as Amide Replacements;57
5.3.1;A. Geometry and Conformation;57
5.3.2;B. Structural Effects of Amide-to-Ester Mutations;59
5.4;IV. Interpretation of Energetic Data from Amide-to-Ester Mutants;61
5.4.1;A. H-Bond Energies and the Thermodynamic Analysis of Amide-to-Ester Mutants;61
5.4.2;B. Kinetic Analysis of Amide-to-Ester Mutants;68
5.5;V. Amide-to-Ester Mutations in Studies of Protein Function;69
5.6;VI. Amide-to-Ester Mutations in Studies of Protein Folding Thermodynamics;71
5.7;VII. Analysis of DeltaDeltaGb and DeltaDeltaGf Values from Amide-to-Ester Mutants;74
5.7.1;A. General Observations;74
5.7.2;B. Quantitative Analysis of DeltaDeltaGf/b Values;77
5.8;VIII. Amide-to-Ester Mutations in Studies of Protein Folding Kinetics;81
5.9;IX. Conclusions and Future Directions;82
5.10;References;83
6;Chapter 3: Modeling Polarization in Proteins and Protein-ligand Complexes: Methods and Preliminary Results;92
6.1;I. Introduction;93
6.2;II. Incorporation of Polarization in Molecular Mechanics Models;94
6.2.1;A. Overview;94
6.2.2;B. Development of the OPLS/PFF Force Field;96
6.2.3;C. Simulation Methodology;98
6.2.4;D. Evaluation of the Polarizable Force Field in the Gas Phase and Condensed Phase;98
6.3;III. Aqueous Solvation Models for Polarizable Simulations;100
6.3.1;A. Overview;100
6.3.2;B. Polarizable Explicit Water Models;101
6.4;IV. Modeling Polarizability with Mixed Quantum Mechanics/Molecular Mechanics Methods;102
6.4.1;A. Overview;102
6.4.2;B. Protein-Ligand Docking Using a Mixed Mixed Quantum Mechanics/Molecular Mechanics Methodology to Compute Ligand Charges;103
6.5;V. Protein Simulations in Explicit Solvent Using a Polarizable Force Field;107
6.5.1;A. Overview;107
6.5.2;B. Simulations of BPTI with Polarizable and Fixed Charge Protein and Water Models;109
6.6;VI. Conclusion;111
6.7;References;112
7;Chapter 4: Hydrogen Bonds In Molecular Mechanics Force Fields;118
7.1;I. Introduction;118
7.2;II. Geometric Deformation;119
7.3;III. Nonbonded Interactions;124
7.4;IV. Conclusion;129
7.5;References;130
8;Chapter 5: Resonance Character of Hydrogen-bonding Interactions in Water and Other H-bonded Species;134
8.1;I. Introduction;135
8.2;II. Natural Bond Orbital Donor-Acceptor Description of H-Bonding;138
8.3;III. Quantum Cluster Equilibrium Theory of H-Bonded Fluids;144
8.4;IV. Recent Experimental Advances in Determining Water Coordination Structure;151
8.5;V. General Enthalpic and Entropic Principles of H-Bonding;154
8.5.1;A. Torsional, Angular, and Dissociative Entropic Contributions;154
8.5.2;B. Binary and Cooperative Enthalpic Contributions;156
8.6;VI. Hydrophobic Solvation: A Cluster Equilibrium View;158
8.7;VII. Summary and Conclusions: The Importance of Resonance in H-Bonding and Its Possible Representation by Molecular Dynamics Simulations;162
8.8;References;163
9;Chapter 6: How hydrogen bonds shape membrane protein structure;170
9.1;I. Introduction;170
9.2;II. Structure of Fluid Lipid Bilayers;172
9.3;III. Energetics of Peptides in Bilayers;173
9.3.1;A. Folding in the Membrane Interface;174
9.3.2;B. Transmembrane Helices;176
9.4;IV. Helix-Helix Interactions in Bilayers;178
9.5;V. Perspectives;180
9.6;References;180
10;Chapter 7: Peptide and Protein Folding and Conformational Equilibria: Theoretical Treatment of Electrostatics and Hydrogen Bonding with Implicit Solvent Models;186
10.1;I. Introduction;187
10.2;II. Generalized Born (GB) Models;189
10.2.1;A. GB Electrostatics Theory;189
10.2.2;B. Advances and Achievements;192
10.2.3;C. Remaining Opportunities for Continued Improvement;195
10.3;III. Peptide Folding and Conformational Equilibria;197
10.3.1;A. Influence of Backbone H-Bond Strength on Conformational Equilibria;197
10.3.2;B. Influence of Backbone Dihedral Energetics on Conformational Equilibria;202
10.4;IV. Concluding Discussion;203
10.5;References;205
11;Chapter 8: Thermodynamics Of alpha-Helix Formation;212
11.1;I. First 50 Years of Study of the Thermodynamics of the Helix-Coil Transition;212
11.2;II. The Quest for Enthalpy of the Helix-Coil Transition;218
11.3;III. Temperature Dependence of Enthalpy of the Helix-Coil Transition;226
11.4;IV. Thermodynamic Helix Propensity Scale: Importance of Peptide Backbone Hydration;228
11.5;V. Other Instances When Peptide Backbone Hydration is Important for Stability;229
11.6;VI. Future Directions;231
11.7;References;233
12;Chapter 9: The Importance of Cooperative Interactions and a Solid-State Paradigm to Proteins: What Peptide Chemists Can Learn from Molecular Crystals;240
12.1;I. Introduction;241
12.2;II. Similarities and Differences Between Proteins/Peptides and Molecular Crystals;242
12.2.1;A. Similarities;242
12.2.2;B. Differences;243
12.3;III. The Importance of H-Bond Cooperativity in Molecular Crystals;244
12.3.1;A. Enthalpy Is Relatively More Important in the Solid Than in the Liquid;244
12.3.2;B. H-Bonds Are More Stable in the Solid Than in the Liquid State;245
12.4;IV. Structural Consequences of H-Bond Cooperativity in Molecular Crystals;247
12.4.1;A. Acetic Acid;248
12.4.2;B. 1,3-Cyclohexanedione;248
12.4.3;C. Urea;250
12.4.4;D. Formamide;251
12.4.5;E. CH...O H-Bonding Interactions and Parabenzoquinone;251
12.5;V. How Does the Use of the Crystal Paradigm Affect Protein/Peptide Study?;253
12.5.1;A. Low-Barrier H-Bonds;253
12.6;VI. Are H-Bonds Electrostatic?;255
12.6.1;A. Water-Water H-Bonding Cannot be Described Adequately Purely by Electrostatic Interactions;255
12.6.2;B. Comparison of H-Bonds with the Behavior of Molecules in an Electric Field;256
12.7;VII. How Strong are Peptide H-Bonds?;256
12.7.1;A. Amide Dimers;257
12.7.2;B. Formamide Chains;257
12.7.3;C. alpha-Helices;260
12.7.4;D. Protonated alpha-Helices;263
12.7.5;E. beta-Sheets;263
12.7.6;F. Collagen-like Triple Helices;265
12.8;VIII. Comparison with Experimental Data from Studies in Solution;268
12.8.1;A. alpha-Helices;268
12.9;IX. The Importance of a Suitable Reference State(s);270
12.9.1;A. Differences between Reference States for Experimental and Theoretical Studies;270
12.9.2;B. Multiple Reference States;270
12.9.3;C. Component Amino Acids;270
12.9.4;D. Extended beta-Strand;271
12.9.5;E. Choosing More Than One Reference State;272
12.10;X. How Protein Chemists Can Deal with Problems Posed by Dual Paradigms;273
12.10.1;A. Theoretical and Modeling Studies;273
12.10.2;B. Experimental Studies;274
12.11;XI. Water, the Hydrophobic Effect and Entropy;276
12.11.1;A. Water;276
12.11.2;B. The Hydrophobic Effect and Entropy;277
12.11.3;C. Another Origin of Entropy Control of Protein Folding;278
12.12;XII. Concluding Remarks;280
12.13;References;280
13;Author Index;288
14;Subject Index;304


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.