Baker | Transcendental Number Theory | Buch | 978-1-009-22994-4 | sack.de

Buch, Englisch, 190 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 276 g

Reihe: Cambridge Mathematical Library

Baker

Transcendental Number Theory

Buch, Englisch, 190 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 276 g

Reihe: Cambridge Mathematical Library

ISBN: 978-1-009-22994-4
Verlag: Cambridge University Press


First published in 1975, this classic book gives a systematic account of transcendental number theory, that is, the theory of those numbers that cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory, which continues to see rapid progress today. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue–Siegel–Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindžuk's solution to the Mahler conjecture. This edition includes an introduction written by David Masser describing Baker's achievement, surveying the content of each chapter and explaining the main argument of Baker's method in broad strokes. A new afterword lists recent developments related to Baker's work.
Baker Transcendental Number Theory jetzt bestellen!

Weitere Infos & Material


Introduction David Masser; Preface; 1. The origins; 2. Linear forms in logarithms; 3. Lower bounds for linear forms; 4. Diophantine equations; 5. Class numbers of imaginary quadratic fields; 6. Elliptic functions; 7. Rational approximations to algebraic numbers; 8. Mahler's classification; 9. Metrical theory; 10. The exponential function; 11. The Shiegel–Shidlovsky theorems; 12. Algebraic independence; Bibliography; Original papers; Further publications; New developments; Some Developments since 1990 David Masser; Index.


Masser, David
David Masser is Professor Emeritus in the Department of Mathematics and Computer Science at the University of Basel. He is a leading researcher in transcendence methods and applications and helped correct the proofs of the original edition of Transcendental Number Theory as Baker's student.

Baker, Alan
Alan Baker was one of the leading British mathematicians of the past century. He took great strides in number theory by, among other achievements, obtaining a vast generalization of the Gelfond–Schneider Theorem and using it to give effective solutions to a large class of Diophantine problems. This work kicked off a new era in transcendental number theory and won Baker the Fields Medal in 1970.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.