E-Book, Englisch, 509 Seiten, eBook
Bajenescu / Bazu Reliability of Electronic Components
1999
ISBN: 978-3-642-58505-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Practical Guide to Electronic Systems Manufacturing
E-Book, Englisch, 509 Seiten, eBook
ISBN: 978-3-642-58505-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This application-oriented professional book explains why components fail, addressing the needs of engineers who apply reliability principles in design, manufacture, testing and field service. A detailed index, a glossary, acronym lists, reliability dictionaries and a rich specific bibliography complete the book.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction.- 1.1 Definition of reliability.- 1.2 Historical development perspective.- 1.3 Quality and reliability.- 1.4 Economics and optimisation.- 1.5 Probability; basic laws.- 1.5.1 Probability distributions.- 1.5.2 Basic reliability distribution theory.- 1.6 Specific terms.- 1.6.1 The generalised definition of l and MTBF.- 1.7 Failures types.- 1.7.1 Failures classification.- 1.8 Reliability estimates.- 1.9 “Bath—tub” failure curve.- 1.10 Reliability of electronic systems.- 1.10.1 Can the batch reliability be increased?.- 1.10.2 What is the utility of screening tests?.- 1.10.3 Derating technique.- 1.10.4 About the testability of electronic and telecommunication systems.- 1.10.5 Accelerated ageing methods for equipped boards.- 1.10.6 Operational failures.- 1.10.7 FMEA/FMECA method.- 1.10.8 Fault tree analysis (FTA).- 1.10.8.1 Monte Carlo techniques.- 1.10.9 Practical recommendations.- 1.10.10 Component reliability and market economy.- 1.11 Some examples.- References.- 2 State of the Art in Reliability.- 2.1 Cultural features.- 2.1.1 Quality and reliability assurance.- 2.1.2 Total quality management (TQM).- 2.1.3 Building-in reliability (BIR).- 2.1.4 Concurrent engineering (CE).- 2.1.5 Acquisition reform.- 2.2 Reliability building.- 2.2.1 Design for reliability.- 2.2.2 Process reliability.- 2.2.2.1 Technological synergies.- 2.2.3 Screening and burn-in.- 2.2.3.1 Burn-in.- 2.2.3.2 Economic aspects of burn-in.- 2.2.3.3 Other screening tests.- 2.2.3.4 Monitoring the screening.- 2.3 Reliability evaluation.- 2.3.1 Environmental reliability testing.- 2.3.1.1 Synergy of environmental factors.- 2.3.1.2 Temperature cycling.- 2.3.1.3 Behavior in a radiation field.- 2.3.2 Life testing with noncontinous inspection.- 2.3.3 Accelerated testing.- 2.3.3.1 Activation energy depends on the stress level.- 2.3.4 Physics of failure.- 2.3.4.1 Drift, drift failures and drift behaviour.- 2.3.5 Prediction methods.- 2.3.5.1 Prediction methods based on failure physics.- 2.3.5.2 Laboratory versus operational reliability.- 2.4 Standardisation.- 2.4.1 Quality systems.- 2.4.2 Dependability.- References.- 3 Reliability of Passive Electronic Parts.- 3.1 How parts fail.- 3.2 Resistors.- 3.2.1 Some important parameters.- 3.2.2 Characteristics.- 3.2.3 Reasons for inconstant resistors [3.8]...[3.10].- 3.2.3.1 Carbon film resistors (Fig. 3.4).- 3.2.3.2 Metal film resistors.- 3.2.3.3 Composite resistors (on inorganic basis).- 3.2.4 Some design rules.- 3.2.5 Some typical defects of resistors.- 3.2.5.1 Carbon film resistors.- 3.2.5.2 Metal film resistors.- 3.2.5.3 Film resistors.- 3.2.5.4 Fixed wirewound resistors.- 3.2.5.5 Variable wirewound resistors.- 3.2.5.6 Noise behaviour.- 3.3 Reliability of capacitors.- 3.3.1 Introduction.- 3.3.2 Aluminium electrolytic capacitors.- 3.3.2.1 Characteristics.- 3.3.2.2 Results of reliability research studies.- 3.3.2.3 Reliability data.- 3.3.2.4 Main failures types.- 3.3.2.5 Causes of failures.- 3.3.3 Tantalum capacitors.- 3.3.3.1 Introduction.- 3.3.3.2 Structure and properties.- 3.3.3.3 Reliability considerations.- 3.3.3.4 DC/C0 variation with temperature.- 3.3.3.5 The failure rate and the product CU.- 3.3.3.6 Loss factor.- 3.3.3.7 Impedance at 100 Hz.- 3.3.3.8 Investigating the stability of 35 V tantalum capacitor.- 3.3.3.9 The failure rate model.- 3.3.4 Reliability comparison.- 3.3.5 Another reliability comparison.- 3.3.6 Polyester film / foil capacitors.- 3.3.6.1 Introduction.- 3.3.6.2 Life testing.- 3.3.6.3 1 as a function of temperature and load.- 3.3.6.4 Reliability conclusions.- 3.3.7 Wound capacitors.- 3.3.8 Reliability and screening methods [3.37] [3.38].- 3.4 Zinc oxide (ZnO) varistors [3.39]...[3.45].- 3.4.1 Pulse behaviour of ZnO varistors.- 3.4.2 Reliability results.- 3.5 Connectors.- 3.5.1 Specifications profile.- 3.5.2 Elements of a test plan.- References.- 4 Reliability of Diodes.- 4.1 Introduction.- 4.2 Semiconductor diodes.- 4.2.1 Structure and properties.- 4.2.2 Reliability tests and results.- 4.2.3 Failure mechanisms.- a. Mechanical failure mechanisms.- b. Electrical failure mechanisms.- 4.2.4 New technologies.- 4.2.5 Correlation between technology and reliability.- 4.2.6 Intermittent short-circuits.- 4.3 Z diodes.- 4.3.1 Characteristics.- 4.3.2 Reliability investigations and results.- 4.3.3 Failure mechanisms.- 4.3.3.1 Failure mechanisms of Z diodes.- 4.3.3.2 Design for reliability.- 4.3.3.3 Some general remarks.- 4.3.3.4 Catastrophic failures.- 4.3.3.5 Degradation failures.- 4.4 Trans-Zorb diodes.- 4.4.1 Introduction.- 4.4.2 Structure and characteristics.- 4.5 Impatt (IMPact Avalanche and Transit-Time) diodes.- 4.5.1 Reliability test results for HP silicon single drift Impatt diodes.- 4.5.2 Reliability test results for HP silicon double drift Impatt diodes.- 4.5.3 Factors affecting the reliability and safe operation.- References.- 5 Reliability of Silicon Transistors.- 5.1 Introduction.- 5.2 Technologies and power limitations.- 5.2.1 Bipolar transistors.- 5.2.2 Unipolar transistors.- 5.3 Electrical characteristics.- 5.3.1 Recommendations.- 5.3.2 Safety Limits.- 5.3.3 The du/dt phenomenon.- 5.4 Reliability characteristics.- 5.5 Thermal fatigue.- 5.6 Causes of failures.- 5.6.1 Failure mechanisms.- 5.6.2 Failure modes.- 5.6.3 A check-up for the users.- 5.6.4 Bipolar transistor peripherics.- 5.7 The package problem.- 5.8 Accelerated tests.- 5.8.1 The Arrhenius model.- 5.8.2 Thermal cycling.- 5.9 How to improve the reliability.- 5.10 Some recommendations.- References.- 6 Reliability of Thyristors.- 6.1 Introduction.- 6.2 Design and reliability.- 6.2.1 Failure mechanisms.- 6.2.2 Plastic and hermetic package problems.- 6.2.3 Humidity problem.- 6.2.4 Evaluating the reliability.- 6.2.5 Thyristor failure rates.- 6.3 Derating.- 6.4 Reliability screens by General Electric.- 6.5 New technology in preparation: SITH.- References.- 7 Reliability of Integrated Circuits.- 7.1 Introduction.- 7.2 Reliability evaluation.- 7.2.1 Some reliability problems.- 7.2.2 Evaluation of integrated circuit reliability.- 7.2.3 Accelerated thermal test.- 7.2.4 Humidity environment.- 7.2.5 Dynamic life testing.- 7.3 Failure analysis.- 7.3.1 Failure mechanisms.- 7.3.1.1 Gate oxide breakdown.- 7.3.1.2 Surface charges.- 7.3.1.3 Hot carrier effects.- 7.3.1.4 Metal diffusion.- 7.3.1.5 Electromigration.- 7.3.1.6 Fatigue.- 7.3.1.7 Aluminium-gold system.- 7.3.1.8 Brittle fracture.- 7.3.1.9 Electrostatic Discharge (ESD).- 7.3.2 Early failures.- 7.3.3 Modeling IC reliability.- 7.4 Screening and burn-in.- 7.4.1 The necessity of screening.- 7.4.2 Efficiency and necessity of burn-in.- 7.4.3 Failures at screening and burn-in.- 7.5 Comparison between the IC families TTL Standard and TTL-LS.- 7.6 Application Specific Integrated Circuits (ASIC).- References.- 8 Reliability of Hybrids.- 8.1 Introduction.- 8.2 Thin-film hybrid circuits.- 8.2.1 Reliability characteristics of resistors.- 8.2.2 Reliability of throughout-contacts.- 8.3 Thick-film hybrids.- 8.3.1 Failure types.- 8.3.2 Reliability of resistors and capacitors.- 8.3.3 Reliability of “beam-leads”.- 8.4 Thick-film versus thin-film hybrids.- 8.5 Reliability of hybrid ICs.- 8.6 Causes of failures.- 8.7 Influence of radiation.- 8.8 Prospect outlook of the hybrid technology.- 8.9 Die attach and bonding techniques.- 8.9.1 Introduction.- 8.9.2 Hybrid package styles.- 8.10 Failure mechanisms.- References.- 9 Reliability of Memories.- 9.1 Introduction.- 9.2 Process-related reliability aspects.- 9.3 Possible memories classifications.- 9.4 Silicon On Insulator (SOI) technologies.- 9.4.1 Silicon on sapphire (SOS) technology.- 9.5 Failure frequency of small geometry memories.- 9.6 Causes of hardware failures.- 9.6.1 Read only memories (ROMs).- 9.6.2 Small geometry devices.- 9.7 Characterisation testing.- 9.7.1 Timing and its influence on characterisation and test.- 9.7.2 Test and characterisation of refresh.- 9.7.2.1 Screening tests and test strategies.- 9.7.3 Test—programmes and —categories.- 9.7.3.1 Test categories.- 9.7.3.2 RAM failure modes.- 9.7.3.3 Radiation environment in space; hardening approaches.- 9.8 Design trends in microprocessor domain.- 9.9 Failure mechanisms of microprocessors.- References.- 10 Reliability of Optoelectronics.- 10.1 Introduction.- 10.2 LED reliability.- 10.3 Optocouplers.- 10.3.1 Introduction.- 10.3.2 Optocouplers ageing problem.- 10.3.3 CTR degradation and its cause.- 10.3.4 Reliability of optocouplers.- 10.3.5 Some basic rules for circuit designers.- 10.4 Liquid crystal displays.- 10.4.1 Quality and reliability of LCDs.- References.- 11 Noise and Reliability.- 11.2 Excess noise and reliability.- 11.3 Popcorn noise.- 11.4 Flicker noise.- 11.4.1 Measuring noise.- 11.4.2 Low noise, long life.- 11.5 Noise figure.- 11.6 Improvements in signal quality of digital networks.- References.- 12 Plastic Package and Reliability.- 12.1 Historical development.- 12.2 Package problems.- 12.2.1 Package functions.- 12.3 Some reliabilistic aspects of the plastic encapsulation.- 12.4 Reliability tests.- 12.4.1 Passive tests.- 12.4.2 Active tests.- 12.4.3 Life tests.- 12.4.4 Reliability of intermittent functioning plastic encapsulated ICs.- 12.5 Reliability predictions.- 12.6 Failure analysis.- 12.7 Technological improvements.- 12.7.1 Reliability testing of PCB equipped with PEM.- 12.7.2 Chip-Scale packaging.- 12.8 Can we use plastic encapsulated microcircuits (PEM) in high reliability applications?.- References.- 13 Test and Testability of Logic Ics.- 13.1 Introduction.- 13.2 Test and test systems.- 13.2.1 Indirect tests.- 13.3 Input control tests of electronic components.- 13.3.1 Electrical tests.- 13.3.2 Some economic considerations.- 13.3.3 What is the cost of the tests absence?.- 13.4 LIC selection and connected problems.- 13.4.1 Operational tests of memories.- 13.4.2 Microprocessor test methods.- 13.4.2.1 Selftesting.- 13.4.2.2 Comparison method.- 13.4.2.3 Real time algorithmic method.- 13.4.2.4 Registered patterns method.- 13.4.2.5 Random test of microprocessors.- 13.5 Testability of LICs.- 13.5.1 Constraints.- 13.5.2 Testability of sequential circuits.- 13.5.3 Independent and neutral test laboratories.- 13.6 On the testability of electronic and telecommunications systems.- References.- 14 Failure Analysis.- 14.1 Introduction [14.1]...[14.25].- 14.2 The purpose of failure analysis.- 14.2.1 Where are discovered the failures?.- 14.2.2 Types of failures.- 14.3 Methods of analysis.- 14.3.1 Electrical analysis.- 14.3.2 X-ray analysis.- 14.3.3 Hermeticity testing methods.- 14.3.4 Conditioning tests.- 14.3.5 Chemical means.- 14.3.6 Mechanical means.- 14.3.7 Microscope analysis.- 14.3.8 Plasma etcher.- 14.3.9 Electron microscope.- 14.3.10 Special means.- 14.4 Failure causes.- 14.5 Some examples.- References.- 15 Appendix.- 15.1 Software-package RAMTOOL++ [15.1].- 15.1.1 Core and basic module R3 Trecker.- 15.1.2 RM analyst.- 15.1.3 Mechanicus (Maintainability analysis).- 15.1.4 Logistics.- 15.1.5 RM FFT-module.- 15.1.6 PPoF-module.- 15.2 Failure rates for components used in telecommunications.- 15.3 Failure types for electronic components [15.2].- 15.4 Detailed failure modes for some components.- 15.5 Storage reliability data [15.3].- 15.6 Failure criteria. Some examples.- 15.7 Typical costs for the screening of plastic encapsulated ICs.- 15.8 Results of 1000 h HTB life tests for CMOS microprocessors.- 15.9 Results of 1000 h HTB life tests for linear circuits.- 15.10 Average values of the failure rates for some IC families.- 15.11 Activation energy values for various technologies.- 15.12 Failures at burn-in.- References.- General Bibliography.- Reliability Glossary.- List of Abbreviations.- Polyglot Dictionary of Reliability Terms.




