E-Book, Englisch, Band 105, 210 Seiten, eBook
Bagdasarov Chebyshev Splines and Kolmogorov Inequalities
Erscheinungsjahr 2012
ISBN: 978-3-0348-8808-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 105, 210 Seiten, eBook
Reihe: Operator Theory: Advances and Applications
ISBN: 978-3-0348-8808-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
0 Introduction.- 1 Auxiliary Results.- 2 Maximization of Functionals in H? [a, b] and Perfect ?-Splines.- 3 Fredholm Kernels.- 4 Review of Classical Chebyshev Polynomial Splines.- 5 Additive Kolmogorov-Landau Inequalities.- 6 Proof of the Main Result.- 7 Properties of Chebyshev ?-Splines.- 8 Chebyshev ?-Splines on the Half-line ?+.- 9 Maximization of Integral Functional in H?[a1, a2], -? ? a1 < a2 ? +?.- 10 Sharp Kolmogorov Inequalities in WrH?(?).- 11 Landau and Hadamard Inequalities in WrH?(?+) and WrH?(?).- 12 Sharp Kolmogorov-Landau inequalities in W2H?(?) AND W2H?(?+.- 13 Chebyshev ?-Splines in the Problem of N-Width of the Functional Class WrH?[0, 1].- 14 Function in WrH?[-1, 1] Deviating Most from Polynomials of Degree r.- 15 N-Widths of the Class WrH?[-1, 1].- 16 Lower Bounds for the N-Widths of the Class WrH?[n].- Appendix A Kolmogorov Problem for Functions.- A.3 Sufficient conditions of extremality in the problem (K - L).- A.3.1 Corollaries of differentiation formulas.- A.3.2 Extremality conditions in the form of an operator equation.- A.4.2 Solution of the problem (K).- A.4.3 Problem (K) in the Hölder classes.- B.1 Preliminary remarks.- B.2 Maximization of the norm.- B.2.1 Differentiation formulae and inequalities.- B.3 Maximization of the norm.- B.4 Maximization of the norm.- B.5 Maximization of the norm.