Baesens | Analytics in a Big Data World | E-Book | sack.de
E-Book

E-Book, Englisch, 256 Seiten, E-Book

Reihe: SAS Institute Inc

Baesens Analytics in a Big Data World

The Essential Guide to Data Science and its Applications
1. Auflage 2014
ISBN: 978-1-118-89274-9
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

The Essential Guide to Data Science and its Applications

E-Book, Englisch, 256 Seiten, E-Book

Reihe: SAS Institute Inc

ISBN: 978-1-118-89274-9
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The guide to targeting and leveraging business opportunitiesusing big data & analytics
By leveraging big data & analytics, businesses create thepotential to better understand, manage, and strategicallyexploiting the complex dynamics of customer behavior. Analyticsin a Big Data World reveals how to tap into the powerful toolof data analytics to create a strategic advantage and identify newbusiness opportunities. Designed to be an accessible resource, thisessential book does not include exhaustive coverage of allanalytical techniques, instead focusing on analytics techniquesthat really provide added value in business environments.
The book draws on author Bart Baesens' expertise on the topicsof big data, analytics and its applications in e.g. credit risk,marketing, and fraud to provide a clear roadmap for organizationsthat want to use data analytics to their advantage, but need a goodstarting point. Baesens has conducted extensive research on bigdata, analytics, customer relationship management, web analytics,fraud detection, and credit risk management, and uses thisexperience to bring clarity to a complex topic.
* Includes numerous case studies on risk management, frauddetection, customer relationship management, and web analytics
* Offers the results of research and the author's personalexperience in banking, retail, and government
* Contains an overview of the visionary ideas and currentdevelopments on the strategic use of analytics for business
* Covers the topic of data analytics in easy-to-understand termswithout an undo emphasis on mathematics and the minutiae ofstatistical analysis
For organizations looking to enhance their capabilities via dataanalytics, this resource is the go-to reference for leveraging datato enhance business capabilities.

Baesens Analytics in a Big Data World jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xiii
Acknowledgments xv
Chapter 1 Big Data and Analytics 1
Example Applications 2
Basic Nomenclature 4
Analytics Process Model 4
Job Profiles Involved 6
Analytics 7
Analytical Model Requirements 9
Notes 10
Chapter 2 Data Collection, Sampling, and Preprocessing 13
Types of Data Sources 13
Sampling 15
Types of Data Elements 17
Visual Data Exploration and Exploratory Statistical Analysis 17
Missing Values 19
Outlier Detection and Treatment 20
Standardizing Data 24
Categorization 24
Weights of Evidence Coding 28
Variable Selection 29
Segmentation 32
Notes 33
Chapter 3 Predictive Analytics 35
Target Definition 35
Linear Regression 38
Logistic Regression 39
Decision Trees 42
Neural Networks 48
Support Vector Machines 58
Ensemble Methods 64
Multiclass Classification Techniques 67
Evaluating Predictive Models 71
Notes 84
Chapter 4 Descriptive Analytics 87
Association Rules 87
Sequence Rules 94
Segmentation 95
Notes 104
Chapter 5 Survival Analysis 105
Survival Analysis Measurements 106
Kaplan Meier Analysis 109
Parametric Survival Analysis 111
Proportional Hazards Regression 114
Extensions of Survival Analysis Models 116
Evaluating Survival Analysis Models 117
Notes 117
Chapter 6 Social Network Analytics 119
Social Network Definitions 119
Social Network Metrics 121
Social Network Learning 123
Relational Neighbor Classifier 124
Probabilistic Relational Neighbor Classifier 125
Relational Logistic Regression 126
Collective Inferencing 128
Egonets 129
Bigraphs 130
Notes 132
Chapter 7 Analytics: Putting It All to Work 133
Backtesting Analytical Models 134
Benchmarking 146
Data Quality 149
Software 153
Privacy 155
Model Design and Documentation 158
Corporate Governance 159
Notes 159
Chapter 8 Example Applications 161
Credit Risk Modeling 161
Fraud Detection 165
Net Lift Response Modeling 168
Churn Prediction 172
Recommender Systems 176
Web Analytics 185
Social Media Analytics 195
Business Process Analytics 204
Notes 220
About the Author 223
Index 225


BART BAESENS is an associate professor at KU Leuven(Belgium) and a lecturer at the University of Southampton (UnitedKingdom), as well as an internationally known data analyticsconsultant. He is a foremost researcher in the areas of webanalytics, customer relationship management, and fraud detection.His findings have been published in well-known internationaljournals including Machine Learning and ManagementScience. Baesens is also co-author of the book Credit RiskManagement: Basic Concepts (Oxford University Press, 2008).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.