Badea | Design for Micro-Combined Cooling, Heating and Power Systems | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 396 Seiten

Reihe: Green Energy and Technology

Badea Design for Micro-Combined Cooling, Heating and Power Systems

Stirling Engines and Renewable Power Systems
2015
ISBN: 978-1-4471-6254-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Stirling Engines and Renewable Power Systems

E-Book, Englisch, 396 Seiten

Reihe: Green Energy and Technology

ISBN: 978-1-4471-6254-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems.In residential buildings, satisfying demands of durable development has gradually evolved from necessity to obligation and institutionalisation. Consequently a major paradigm change has appeared in the supply of energy to residential buildings, from the centralised production of energy using fossil fuels to the decentralised production of energy using local renewable sources. Furthermore, on the energy system market, energy micro systems which use renewable energy sources are increasingly commercialised. From among these, the mCCHP-SE-RES systems are particularly striking because they offer a high performance and they enhance the relationship between humans and the environment. This book is intended for postgraduate students of electrical engineering, applied mathematicians, and researchers of modelling and control of complex systems or power system technologies.

Nicolae Badea is a professor at the Dunarea de Jos University of Galati since 2004, starting his teaching career in 1989. He has published books and book chapters in the fields of electrical machines, electrical equipments, electromagnetic field theory, electric circuit theory, wind energy. He has more than 100 papers and articles published in national and international conferences and journals. His main fields of interest and expertise are the electricity sector, renewable energies ((wind, PV, thermal-solar, mini-hydro, biomass, fuel cells - hydrogen), energy efficiency, security of supply, climate change, sustainable development, micro cogeneration and trigeneration systems. Professor Badea has done applied research as project manager in national and international projects that use renewable energy sources and develop micro co/trigeneration systems.

Badea Design for Micro-Combined Cooling, Heating and Power Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Acknowledgments;6
2;Contents;7
3;1 Microgeneration Outlook;8
3.1;Abstract;8
3.2;1 Evolution;8
3.2.1;1.1 The European Union;9
3.2.2;1.2 The European Energy Sector;9
3.2.3;1.3 Traditional Grids Versus Smart Grids;10
3.2.4;1.4 Microgeneration Systems;11
3.3;2 Challenges in the European Energy Sector;12
3.3.1;2.1 Connecting the Dots;13
3.3.1.1;2.1.1 Environment/Sustainable Development;13
3.3.1.2;2.1.2 Energy Security/Security of Supply;16
3.3.1.2.1;Internal Energy Market;20
3.4;3 Policy Overview;22
3.4.1;3.1 Europe 2020;22
3.4.2;3.2 Roadmap 2050;24
3.4.3;3.3 Framework;25
3.5;4 Regulatory Framework;26
3.5.1;4.1 IEM Directive;27
3.5.2;4.2 RES Directive;28
3.5.3;4.3 EPBD Directive;29
3.5.4;4.4 EED Directive;31
3.6;5 Trends;34
3.7;References;36
4;2 Decentralized Poly-generation of Energy: Basic Concepts;39
4.1;Abstract;39
4.2;1 Energy;39
4.2.1;1.1 Forms of Energy;40
4.2.2;1.2 Energy Units;41
4.2.3;1.3 Energy Conversion;42
4.3;2 The Concept of Cogeneration;45
4.3.1;2.1 Centralized Versus Distributed Energy Generation;46
4.3.2;2.2 Performance Indicators of Cogeneration Systems;52
4.3.2.1;2.2.1 Energy Efficiency;53
4.3.2.2;2.2.2 Fuel Utilization Efficiency;54
4.3.2.3;2.2.3 Primary Energy Saving;54
4.4;3 The Trigeneration Concept;55
4.4.1;3.1 Energy Conversion in the Trigeneration;57
4.4.2;3.2 Performance Indicators of the Trigeneration Systems;61
4.4.2.1;3.2.1 Primary Energy Saving to Trigeneration Systems;61
4.4.2.2;3.2.2 Energy Efficiency of the Trigeneration Systems;63
4.5;References;64
5;3 Combined Micro-Systems;66
5.1;Abstract;66
5.2;1 The Micro-CHP Technologies;66
5.2.1;1.1 Steam Turbines;67
5.2.1.1;1.1.1 Method Based on Increasing the Pressure and Temperature in the Warm Source;69
5.2.1.2;1.1.2 Method Based on Decreasing the Temperature and Pressure in the Cold Source;70
5.2.2;1.2 Gas Micro Turbines;72
5.2.3;1.3 Thermal Engines with Internal Combustion;74
5.2.4;1.4 Stirling Engines;76
5.2.5;1.5 Fuel Cell;77
5.3;2 Comparative Analysis of Cogeneration Technologies in mCHP Systems;79
5.4;3 The mCCHP Systems;84
5.4.1;3.1 Architecture of the mCCHP Systems;84
5.4.1.1;3.1.1 The mCCHP System with a Mechanical Compression Chiller;86
5.4.1.2;3.1.2 The mCCHP System with a Thermal Compression Chiller;87
5.4.2;3.2 Operation Modes of the mCHP Unit;88
5.5;References;93
6;4 Renewable Energy Sources for the mCCHP-SE-RES Systems;95
6.1;Abstract;95
6.2;1 Primary Energy for Building's Energy Systems;96
6.2.1;1.1 Microgeneration Systems;96
6.2.2;1.2 The New Paradigm;97
6.2.3;1.3 The Renewable Sources Used in Building's Energy Systems;99
6.3;2 Solar Energy;101
6.3.1;2.1 The Principle of Solar Energy Conversion;102
6.3.2;2.2 Performances of Solar Energy Conversion;104
6.3.3;2.3 Solar Energy Storage;105
6.3.3.1;2.3.1 Electrical Energy Storage;106
6.3.3.2;2.3.2 Thermal Energy Storage;108
6.4;3 Biomass;109
6.4.1;3.1 Biomass Sources and Technologies;110
6.4.2;3.2 Biofuel Combustion;114
6.5;4 Stirling Engine as Cogeneration Unit;119
6.6;5 Boilers;121
6.7;6 Solar Thermal Collectors;123
6.7.1;6.1 Construction and Operation;124
6.7.2;6.2 Performances of Thermal Solar Collectors;130
6.8;7 Photovoltaic Panels;132
6.8.1;7.1 General Aspects;132
6.8.2;7.2 Connection to Load;133
6.9;References;135
7;5 Structural Design of the mCCHP-RES System;136
7.1;Abstract;136
7.2;1 Conceptual Framework;137
7.2.1;1.1 General Aspects;138
7.2.2;1.2 System Conceptual Scheme;140
7.2.3;1.3 Typical Actions;141
7.2.4;1.4 Design Process;143
7.3;2 Manufacturer Business Plan;147
7.4;3 Initial Data Collection;148
7.4.1;3.1 Residence Building Features;149
7.4.2;3.2 Customer Needs and Requirements;149
7.4.3;3.3 Residence Functional Needs;149
7.4.4;3.4 Residence Energetic Environment;151
7.4.4.1;3.4.1 Local Climate;151
7.4.4.2;3.4.2 Local Energy Sources and Resources;156
7.5;4 System Structural Modeling;166
7.5.1;4.1 Building the General Structural Model;166
7.5.2;4.2 Identifying the Set of Potential Structural Models;168
7.6;5 Consumption Estimation;169
7.6.1;5.1 Analytical Estimation of the Heat and the Cold;171
7.6.1.1;5.1.1 Analytical Estimation Based on the Heat Transfer Coefficient of Building;174
7.6.1.2;5.1.2 Analytical Estimation Based on the Global Coefficient of Building's Thermal Isolation;185
7.6.2;5.2 Analytically Estimation of the Heat Consumption for Domestic Hot Water (DHW);187
7.6.3;5.3 Analytically Estimation of the Power Consumption for Domestic Facilities;189
7.6.3.1;5.3.1 Procedure Based on Global Consumption Estimation;190
7.6.3.2;5.3.2 Procedure Based on Specific Consumption Estimation;196
7.6.3.3;5.3.3 Simplified Procedure;199
7.6.3.4;5.3.4 Fast Procedure;201
7.6.4;5.4 Synthetical Estimation Based on the Residence Energy Certificate;202
7.6.4.1;5.4.1 Energy Certificate of Building;202
7.6.4.2;5.4.2 Estimation of the Specific Consumption;204
7.6.5;5.5 Consumption Aggregating;207
7.6.5.1;5.5.1 Consumption Aggregating in Case of Mechanical Compression Chiller;207
7.6.5.2;5.5.2 Consumption Aggregating in Case of Thermally Compression Chiller;209
7.7;6 Load Estimation;211
7.7.1;6.1 Load Versus Consumption;211
7.7.2;6.2 System Load Estimation;214
7.7.3;6.3 Load Sharing;214
7.8;7 Evaluation and Improving of the Structural Models Performance;221
7.8.1;7.1 Indicators for Performance Evaluation at System Level;221
7.8.2;7.2 Performance Evaluation and Improving in the Case of Structural Models with Mechanical Compression Chiller;222
7.8.2.1;7.2.1 Structural Model Type off-Grid with Mechanical Compression Chiller;224
7.8.2.2;7.2.2 Structural Model Type on-Grid with Mechanical Compression Chiller;225
7.8.3;7.3 Performance Evaluation and Improving in the Case of Structural Models with Thermal Compression Chiller;229
7.8.3.1;7.3.1 Structural Model Type off-Grid with Thermal Compression Chiller;230
7.8.3.2;7.3.2 Structural Model Type on-Grid with Thermal Compression Chiller;233
7.8.4;7.4 Performance Evaluation of the Potential Structural Models;235
7.8.4.1;7.4.1 Evaluation at the System Level;235
7.8.4.2;7.4.2 Evaluation at the Couple Building-System Level;236
7.9;References;240
8;6 Functional Design of the mCCHP-RES System;242
8.1;Abstract;242
8.2;1 Introduction;243
8.3;2 System Functional Modeling;244
8.3.1;2.1 Building the Functional Schemes;245
8.3.2;2.2 Sizing of the System Components;246
8.3.2.1;2.2.1 Electric Subsystem Components;248
8.3.2.2;2.2.2 Thermal Subsystem Components;263
8.4;3 System Operating and Control;281
8.4.1;3.1 Operating Modes of the CHP Unit;281
8.4.2;3.2 Control Strategy of the CCHP System;282
8.5;4 System Dynamics Analysis;287
8.5.1;4.1 The Structure of the mCCHP System Models Considered in Simulation;288
8.5.2;4.2 Principles of Modeling and Numerical Simulation;288
8.5.3;4.3 Simulation of the Dynamic Regimes;290
8.5.3.1;4.3.1 Electrical Subsystem;290
8.5.3.2;4.3.2 Thermal Subsystem;298
8.5.4;4.4 Simulation and Analysis of mCCHP System---Model 1;303
8.5.4.1;4.4.1 Modeling and Numerical Simulation of the System in Winter Regime;305
8.5.4.2;4.4.2 Modeling and Numerical Simulation of the System in Summer Regime;310
8.5.4.3;4.4.3 Conclusions;315
8.5.5;4.5 Simulation and Analysis of the mCCHP System---Model 2;315
8.5.5.1;4.5.1 Modeling and Numerical Simulation of the System in Winter Regime;315
8.5.5.2;4.5.2 Modeling and Numerical Simulation of the System in Summer Regime;316
8.5.6;4.6 Simulation and Analysis of MCCHP System---Model 3;319
8.5.7;4.7 Simulation and Analysis of MCCHP System---Model 4;320
8.5.8;4.8 Simulation and Analysis of MCCHP System---Model 5;321
8.5.9;4.9 Conclusions;326
8.6;5 Design of the Control Sub-System;328
8.6.1;5.1 Design of the Numerical Controllers;328
8.6.1.1;5.1.1 The Lower Level of the Hierarchical Control System;328
8.6.1.2;5.1.2 The Higher Level of the Hierarchical Control System;332
8.7;6 Interface System;335
8.8;References;338
9;7 Experimental Case Study;339
9.1;Abstract;339
9.2;1 Conceptual Framework;339
9.2.1;1.1 Local Needs Analysis for the Experimental Building;340
9.2.2;1.2 Obtaining Legal Conditions to Permit the Experimental Building Construction with MCCHP System;340
9.2.3;1.3 Local Needs Analysis for mCCHP System Implementation;341
9.3;2 Manufacturer Business Plan;342
9.4;3 Initial Data Collection;342
9.4.1;3.1 Experimental Residence Features;342
9.4.1.1;3.1.1 Residence Location;342
9.4.1.2;3.1.2 Building Drawings;343
9.4.1.3;3.1.3 Characteristic Elements of the Architecture;343
9.4.2;3.2 Customer Needs and Requirements;346
9.4.3;3.3 Residence Functional Needs;346
9.4.3.1;3.3.1 Distribution of Thermal Energy;346
9.4.3.2;3.3.2 Sanitary Appliances;347
9.4.3.3;3.3.3 Electric Energy Input Appliance;347
9.4.4;3.4 Residence Energetic Environment;348
9.4.4.1;3.4.1 Local Climate;348
9.4.4.2;3.4.2 Local Energy Sources and Resources;349
9.5;4 System Structural Modeling;352
9.6;5 Consumption Estimation;354
9.6.1;5.1 Estimation of the Heat for Global Heating and the Cold for Air-Conditioning;354
9.6.2;5.2 Analytical Estimation of the Heat Consumption for Domestic Hot Water;356
9.6.3;5.3 Analytical Estimation of the Global Power Consumption for Domestic Facilities;357
9.6.4;5.4 Determination of the Specific Consumption;358
9.6.5;5.5 Consumption Aggregating;360
9.7;6 Load Estimation;361
9.7.1;6.1 Load Sharing;362
9.8;7 Evaluation and Improving of the Performance;362
9.8.1;7.1 Performance Indicators at the System Level;362
9.8.2;7.2 Performance Improving;363
9.8.3;7.3 Performance Evaluation at the Couple Building-System Level;366
9.9;8 Building the Functional Schemes;367
9.9.1;8.1 Sizing of the System Components;367
9.9.1.1;8.1.1 Electric Subsystem Components;367
9.9.1.2;8.1.2 Thermal Subsystem Components;371
9.10;9 System Operating and Control;382
9.11;10 System Dynamics Analysis;383
9.11.1;10.1 System Dynamics Analysis in Winter Regime;383
9.11.2;10.2 System Dynamics Analysis in Summer Regime;386
9.12;11 Design of the Control Subsystem;389
9.13;12 System Interface;391
9.14;13 The mCCHP-SE-RES System Data;393
9.15;A.x(118). Appendix 1: Experimental System Pictures;394
9.16;References;396



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.