Bachmann | Transfinite Zahlen | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 1, eBook

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

Bachmann Transfinite Zahlen


1955
ISBN: 978-3-642-52756-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, Band 1, eBook

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

ISBN: 978-3-642-52756-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Der vorliegende Bericht soll dem Leser die Ergebnisse und Probleme der Theorie der transfiniten Zahlen (Ordnungszahlen und Mächtigkeiten) nach ihrem heutigen Stande vermitteln, wobei die arithmetischen Fragen ziemlich erschöpfend erörtert werden, während auf axiomatische Fra gen weniger stark eingegangen wird. Die Grundlage bildet dabei das ZERMELO-FRAENKELsche Axiomensystem der Mengenlehre; die Anwen dung des Auswahlaxioms wird stets hervorgehoben. Um die Beschränkung auf einen bestimmten Formalismus zu vermeiden und zwecks besserer Lesbarkeit ist alles in der Sprache der naiven Mengenlehre formuliert. Nach einer allgemeinen Einleitung findet der Leser eine Darstellung der Theorie der Ordnungszahlen, wobei das Auswahlaxiom nur in Aus nahmefällen verwendet wird. Die neuen Ergebnisse über Normalfunktionen (§§7, 16) und über regressive Funktionen (§ 9) sowie die einfache Dar stellung der Theorie der Hauptzahlen (§§ 15,16) dürften dabei besonders von Interesse sein. Sodann folgt die Theorie der Mächtigkeiten; zuerst wird gezeigt, welche ersten Schritte in dieser Theorie ohne Auswahlaxiom ausgeführt werden können; dann wird die Theorie unter Verwendung des Auswahlaxioms (und ausführlicher) weiter entwickelt. Den Äquivalenzen zum Auswahlaxiom (§ 31) und zur Alephhypothese (§ 35) sowie den un erreichbaren Zahlen (§§ 40-42) wird besondere Beachtung geschenkt. Auf das Problem der formalen Darstellung von Ordnungszahlen, auf Anwen dungen der transfiniten Zahlen in der Theorie der Punktmengen und andere Anwendungen konnte wegen des beschränkten zur Verfügung stehenden Raumes nicht stark eingegangen werden. Am Scllluß findet sich ein Literaturverzeichnis, in dem die modernen Arbeiten fast voll ständig, die älteren nur teilweise aufgeführtsind, sowie ein Sachver zeichnis.

Bachmann Transfinite Zahlen jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Einleitung: Allgemeine mengentheoretische Vorbemerkungen.- § 1. Mengenlehre und Grundlagenproblem.- § 2. Die üblichen Axiome der Mengenlehre.- § 3. Äquivalenz und Ähnlichkeit; Wohlordnung.- II. Ordnungszahlen und transfinite Funktionen.- § 4. Die Ordnungszahlen.- § 5. Stetige Funktionen von Ordnungszahlen.- § 6. Die ordinalen Anfangszahlen.- § 7. Normalfunktionen.- § 8. Iterationen und kritische Zahlen.- § 9. Regressive Funktionen.- III. Arithmetik der Ordnungszahlen.- § 10. Mengentheoretische Definition der elementaren arithmetischen Operationen und ihre Gesetze.- § 11. Arithmetische Operationen und Limesoperation.- § 12. Die Polynomdarstellung der Ordnungszahlen.- § 13. Funktionale Theorie der arithmetischen Operationen.- § 14. Höhere arithmetische Operationen.- § 15. Die Theorie der Hauptzahlen.- § 16. Hauptzahlen und kritische Zahlen.- § 17. Die Umkehrungen der arithmetischen Operationen.- § 18. Größte gemeinsame Teiler und kleinste gemeinsame Vielfache.- § 19. Unzerlegbare Zahlen und Primzahlen.- § 20. Zerlegung einer Ordnungszahl in unzerlegbare Zahlen.- § 21. Permutation einer Folge von Ordnungszahlen.- § 22. Vertauschbare Ordnungszahlen.- § 23. Natürliche Operationen.- IV. Arithmetik der Mächtigkeiten und Kardinalzahlen ohne Auswahlaxiom.- § 24. Die Mächtigkeiten beliebiger Mengen und ihre Arithmetik ohne Auswahlaxiom.- § 25. Vergleichung von Mächtigkeiten.- § 26. Die Potenzmenge einer beliebigen Menge.- § 27. Die Kardinalzahlen und die kardinalen Anfangszahlen.- § 28. Arithmetik der Kardinalzahlen ohne Auswahlaxiom.- § 29. Ungleichungen für unendliche Summen und Produkte von Kardinalzahlen.- § 30. Beziehungen zwischen Kardinalzahlen und Mächtigkeiten.- V. Die Konsequenzen des Auswahlaxioms und der Alephhypothese inder Kardinalzahlenarithmetik.- § 31. Äquivalenzen zum Auswahlaxiom.- § 32. Weitere Konsequenzen des Auswahlaxioms in der Arithmetik der Kardinalzahlen.- § 33 Die Beths.- § 34. Summen von Beths und höhere arithmetische Operationen.- § 35 Die Alephhypothese.- § 36. Folgerungen aus der Alephhypothese.- VI. Probleme des Kontinuums und der zweiten Zahlklasse.- § 37. Das Kontinuum und die Probleme seiner Wohlordnung und seiner Mächtigkeit.- § 38. Die zweite Zahlklasse und das Axiom der Hauptfolgen.- § 39. Alternativen zum Auswahlaxiom.- VII. Unerreichbare Zahlen.- § 40. Unerreichbare Ordnungszahlen.- § 41. Unerreichbare Kardinalzahlen.- § 42. Über die Existenz unerreichbarer Zahlen.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.