E-Book, Deutsch, Band 96, 376 Seiten, eBook
Bachmann Aufbau der Geometrie aus dem Spiegelungsbegriff
2. Auflage 1973
ISBN: 978-3-642-65537-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Deutsch, Band 96, 376 Seiten, eBook
Reihe: Grundlehren der mathematischen Wissenschaften
ISBN: 978-3-642-65537-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. Einführung.- § 1. Spiegelungen in der euklidischen Ebene.- §2. Der Begriff der metrischen Ebene.- II. Metrische (absolute) Geometrie.- § 3. Das Axiomensystem der metrischen (absoluten) Geometrie.- § 4. Sätze der metrischen Geometrie.- § 5. Projektive und projektiv-metrische Ebenen.- § 6. Begründung der metrischen Geometrie.- Note über freie Beweglichkeit.- § 7. Über das Transitivitätsgesetz für beliebige involutorische Elemente.- Note über die Algebraisierung der affinen und projektiven Ebenen.- III. Projektiv-metrische Geometrie.- § 8. Projektiv-metrische Koordinatenebenen und metrische Vektorräume.- § 9. Orthogonale Gruppen.- §10. Darstellung metrischer Vektorräume und ihrer orthogonalen Gruppen mit Hilfe hyperkomplexer Systeme.- §11. Die Bewegungsgruppen der hyperbolischen projektiv-metrischen Ebenen als abstrakte, aus ihren involutorischen Elementen erzeugte Gruppen (H-Gruppen).- IV. Euklidische Geometrie.- §12. Der Satz von Paapus -Pascal in der euklidischen Geometrie.- §13. Algebraische Darstellung der euklidischen Bewegungsgruppen.- V. Hyperbolische Geometrie.- §14. Hyperbolische Bewegungsgruppen.- §15. Darstellung der hyperbolischen Bewegungsgruppen durch binäre lineare Gruppen.- VI. Elliptische Geometrie.- §16. Begründung der elliptischen Geometrie.- §17. Der Gruppenraum einer elliptischen Bewegungsgruppe.- §18. Über die metrischen Bewegungsgruppen.- 1. Über verschiedene Erzeugendensysteme derselben Gruppe S. 275..- 2. Die projektiv-metrischen Bewegungsgruppen S. 277..- 3. Die vollständigen metrischen Bewegungsgruppen S. 277..- 4. Metrische Unter-Bewegungsgruppen S. 278..- 5. Zugehörige metrische Unter-Bewegungsgruppen S. 279..- 6. Beispiele S. 280..- §19. Metrisch-euklidische Ebenen.- 1. Geometrische Kennzeichnungmetrisch-euklidischer Teilebenen S. 286..- 2. Algebraische Kennzeichnung metrisch-euklidischer Teilebenen S. 288..- 3. Metrisch-euklidische Teilebenen mit freier Beweglichkeit S. 293..- 4. Metrisch-euklidische Unter-Bewegungsgruppen S. 295..- Literatur.- Zusammenstellung besonderer Zeichen.- Axiomentafel.- Anmerkungen.- 1. Axiomensystem der metrischen Ebenen S. 305..- 2. Höhensatz S. 305..- 3. Gegenpaarungssatz S. 306..- 4. Rechtseitsatz S. 306..- 5. Zur Definition der Idealgeraden und der absoluten Polarität in der Idealebene S. 307..- 7. Elliptische Geometrie S. 310..- 8. Zum Begriff,,total ganzzahlig-einschließbar” S. 310..- Supplement.- § 20. Ergänzungen und Hinweise auf die Literatur.- 1. Involutorisch erzeugte Gruppen S. 313..- 2. Geometrie involutorischer Gruppenelemente S. 314..- 3. Axiomensystem der ebenen absoluten Geometrie S. 318..- 4. Kleine Axiome, Axiomensystem des Senkrechtstehens, Hjelmslev-Gruppen S. 318..- 5. Nicht-elliptische Hjelmslev-Gruppen S. 323..- 6. Minkowskische Gruppen S. 328..- 8. Orthogonale und projektiv-orthogonale Gruppen S. 333..- 10. Eigentlichkeitsbereiche und vollständige Spiegelungsgruppen metrischer Vektorräume S. 338..- 11. Gruppentheoretische Kennzeichnung orthogonaler Gruppen S. 340..- 12. Kinematische Räume S. 342..- 13. Hilbert-Ebenen S. 345..- 14. Modelle der absoluten Geometrie S. 349..- 15. Der Satz von der dritten Quasispiegelung S. 354..- Neuere Literatur.- Namen- und Sachverzeichnis.