Babitsky / Krupenin | Vibration of Strongly Nonlinear Discontinuous Systems | Buch | 978-3-642-07471-4 | sack.de

Buch, Englisch, 402 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 639 g

Reihe: Foundations of Engineering Mechanics

Babitsky / Krupenin

Vibration of Strongly Nonlinear Discontinuous Systems

Buch, Englisch, 402 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 639 g

Reihe: Foundations of Engineering Mechanics

ISBN: 978-3-642-07471-4
Verlag: Springer


Among the wide diversity of nonlinear mechanical systems, it is possible to distinguish a representative class of the systems which may be characterised by the presence of threshold nonlinear positional forces. Under particular configurations, such systems demonstrate a sudden change in the behaviour of elastic and dissipative forces. Mathematical study of such systems involves an analysis of equations of motion containing large-factored nonlinear terms which are associated with the above threshold nonlinearity. Due to this, we distinguish such discontinuous systems from the much wider class of essentially nonlinear systems, and define them as strongly nonlinear systems'. The vibration occurring in strongly nonlinear systems may be characterised by a sudden and abrupt change of the velocity at particular time instants. Such a vibration is said to be non-smooth. The systems most studied from this class are those with relaxation (Van Der Pol, Andronov, Vitt, Khaikhin, Teodorchik, etc. [5,65,70,71,98,171,181]), where the non-smooth vibration usually appears due to the presence of large nonconservative nonlinear forces. Equations of motion describing the vibration with relaxation may be written in such a manner that the highest derivative is accompanied by a small parameter. The methods of integration of these equations have been developed by Vasilieva and Butuzov [182], Volosov and Morgunov [190], Dorodnitsin [38], Zheleztsov [201], Mischenko and Rozov [115], Pontriagin [137], Tichonov [174,175], etc. In a system with threshold nonlinearity, the non-smooth vibration occurs due to the action of large conservative forces. This is distinct from a system with relaxation.
Babitsky / Krupenin Vibration of Strongly Nonlinear Discontinuous Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Operators of Linear Systems.- §1. Dynamic Compliance.- §2. Periodic Green Functions.- §3 Parametric Periodic Green Functions.- 2 Strongly Nonlinear Single-Degree-of Freedom Systems.- §4 Conservative Systems.- §5 Forced Vibration.- §6 Vibration in Autonomous Systems.- §7 Parametric Vibration.- §8 Random Vibration.- 3 Multiple-Degree-of-Freedom Systems.- §9 Forced Vibration in Multiple-Degree-of-Freedom Systems.- §10 Parametric Vibration in the Multiple-Degree-of-Freedom Systems.- Additional Bibliography.- Appendix I The Averaging Method in Systems with Impacts.- Appendix II On the Analysis of Resonant Vibration of Vibro-impact Systems Using the Averaging Technique.- Appendix III Structure-borne Vibroimpact Resonances and Periodic Green Functions.- Appendix IV Nonlinear Correction of a Vibration Protection System Containing Tuned Dynamic Absorber.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.