B. Guedes / de Assis / Medeiros Quantum Zero-Error Information Theory
1. Auflage 2016
ISBN: 978-3-319-42794-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 189 Seiten, eBook
ISBN: 978-3-319-42794-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book aims at presenting the field of Quantum Information Theory in an intuitive, didactic and self-contained way, taking into account several multidisciplinary aspects. Therefore, this books is particularly suited to students and researchers willing to grasp fundamental concepts in Quantum Computation and Quantum Information areas.
The field of Quantum Information Theory has increased significantly over the last three decades. Many results from classical information theory were translated and extended to a scenario where quantum effects become important. Most of the results in this area allows for an asymptotically small probability of error to represent and transmit information efficiently. Claude E.Shannon was the first scientist to realize that error-free classical information transmission can be accomplished under certain conditions. More recently, the concept of error-free classical communication was translated to the quantum context. The so-called Quantum Zero-Error Information Theory completes and extends the Shannon Zero-Error Information Theory.Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
0. Introduction1. Fundamentals of Quantum Mechanicsa) Representing informationb) Processing informationc) Measuring informationd) Density operatore) Quantum mechanics postulatesf) POVM Measurementg) Further reading2. Fundamentals of Information Theorya) Classical Information Theoryb) Quantum Information Theoryc) Further reading3. Classical Zero-Error Information Theorya) Historical backgroundb) Zero-error capacityc) Representation in graphsd) Lovász theta functione) Zero-error capacity of joint systemsf) Further reading4. Quantum Zero-Error Information Theorya) Quantum zero-error capacityb) Representation in graphsc) Relations with Holevo-Schumacher-Westmoreland capacityd) Further reading5. Quantum Zero-Error Secrecy Capacitya) Decoherence-Free Subspaces and Subsystemsb) Quantum Secrecy Capacityc) Defining the Quantum Zero-Error Secrecy Capacityd) Representation in graphse) Security Analysisf) Further reading6. Zero-Error Accessible Information of a Quantum Sourcea) Accessible Information of Quantum Sourceb) Zero-Error Accessible Information of a Quantum Sourcec) Representation in graphsd) Further reading7. Recent Developments in Quantum Zero-Error Information Theorya) Alternative definitionsb) Superactivation of Quantum Zero-Error Capacityc) Practical implementationsd) Further reading




