Buch, Englisch, 70 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 137 g
Buch, Englisch, 70 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 137 g
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-981-16-1033-2
Verlag: Springer Nature Singapore
This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Geowissenschaften Geologie Geotechnik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Technische Wissenschaften Bauingenieurwesen Boden- und Felsmechanik, Geotechnik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
Weitere Infos & Material
Chapter 1. An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance.- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem.- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.