Ayyadevara | Pro Machine Learning Algorithms | E-Book | sack.de
E-Book

E-Book, Englisch, 362 Seiten, eBook

Ayyadevara Pro Machine Learning Algorithms

A Hands-On Approach to Implementing Algorithms in Python and R
1. Auflage 2018
ISBN: 978-1-4842-3564-5
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Hands-On Approach to Implementing Algorithms in Python and R

E-Book, Englisch, 362 Seiten, eBook

ISBN: 978-1-4842-3564-5
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark



Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms , you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence.  What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms  Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud  Follow a hands-on approach through case studies for each algorithmGain the tricks of ensemble learning to build more accurate modelsDiscover the basics of programming in R/Python and the Keras framework for deep learningWho This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.
Ayyadevara Pro Machine Learning Algorithms jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1:  Basics of Machine Learning.- Chapter 2: Linear regression .- Chapter 3: Logistic regression.- Chapter 4:  Decision tree.- Chapter 5: Random forest.- Chapter 6: GBM.- Chapter 7: Neural network.-  Chapter 8: word2vec.- Chapter 9: Convolutional neural network.- Chapter 10: Recurrent Neural Network.- Chapter 11: Clustering.- Chapter 12: PCA.- Chapter 13: Recommender systems.- Chapter 14: Implementing algorithms in the cloud.


V Kishore Ayyadevara currently leads retail analytics consulting in a start-up. He received his MBA from IIM Calcutta. Following that, he worked for American Express in risk management and in Amazon's supply chain analytics teams. He is passionate about leveraging data to make informed decisions - faster and more accurately. Kishore's interests include identifying business problems that can be solved using data, simplifying the complexity within data science and applying data science to achieve quantifiable business results.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.