E-Book, Englisch, 389 Seiten, eBook
Reihe: Biological and Medical Physics, Biomedical Engineering
E-Book, Englisch, 389 Seiten, eBook
Reihe: Biological and Medical Physics, Biomedical Engineering
ISBN: 978-3-030-76728-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
. Laboratories (with or without sophisticated facilities) can perform computational magnetic resonance diagnosis with only T
1
and T
2
relaxation data.
The results have motivated the use of data to produce data-driven predictions required for machine learning, artificial intelligence (AI) and deep learning for multidisciplinary and interdisciplinary research. Consequently, this book is intended to be very useful for students, scientists, engineers, the medical personnel and researchers who are interested in developing new concepts for deeper appreciation of computational magnetic resonance imaging for medical diagnosis, prognosis, therapy and management of tissue diseases.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. General Introduction.- Chapter 2. Fundamental Of Nmr.- Chapter 3. Computational Diffusion Magnetic Resonance Imaging.- Chapter 4. Radiofrequency Identification (Rfid) System For Computational Magnetic Resonance Imaging Of Blood Flow At Suction Points.- Chapter 5. A Computational Magnetic Resonance Imaging Based On Bloch Nmr Flow Equation, Mri Finger Printing, Python Deep Learning For The Classification Of Adult Brain Tumours.- Chapter 6. Analysis Of Hydrogen-Like Ions For Neurocomputing Based On Bloch Nmr Flow Equation.- Chapter 7. Quantum Mechanical Model Of Bloch Nmr Flow Equations For The Transport Analysis Of Quantm-Drugs In Microscopic Blood Vessels Applicable In Nanomedicine.- Chapter 8. Application Of “R” Machine Learning For Magnetic Resonance Relaxometry Data-Representation And Classification Of Human Brain Tumours.- Chapter 9. Advanced Magnetic Resonance Image Processing And Quantitative Analysis In Avizo For Demonstrating Radiomic Contrast Between Radiation Necrosis And Tumor Progression.- Chapter 10. Computational Analysis of Magnetic Resonance Imaging Contrast Agents and their Physico-Chemical Variables.- Chapter 11. General Conclusion