Buch, Englisch, Band 52, 336 Seiten, Format (B × H): 156 mm x 236 mm, Gewicht: 501 g
Reihe: Oxford Logic Guides
Buch, Englisch, Band 52, 336 Seiten, Format (B × H): 156 mm x 236 mm, Gewicht: 501 g
Reihe: Oxford Logic Guides
ISBN: 978-0-19-923718-0
Verlag: Oxford University Press
propositions and theorems, this book aims to make the basic ideas, theorems, and methods of category theory understandable to this broad readership.
Although assuming few mathematical pre-requisites, the standard of mathematical rigour is not compromised. The material covered includes the standard core of categories; functors; natural transformations; equivalence; limits and colimits; functor categories; representables; Yoneda's lemma; adjoints; monads. An extra topic of cartesian closed categories and the lambda-calculus is also provided - a must for computer scientists, logicians and linguists!
This Second Edition contains numerous revisions to the original text, including expanding the exposition, revising and elaborating the proofs, providing additional diagrams, correcting typographical errors and, finally, adding an entirely new section on monoidal categories. Nearly a hundred new exercises have also been added, many with solutions, to make the book more useful as a course text and for self-study.
Zielgruppe
Researchers and graduates in mathematics, computer science, logic, linguistics, and cognitive science, as well as undergraduates in mathematics.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
- Mathematik | Informatik Mathematik Algebra
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Geisteswissenschaften Philosophie Wissenschaftstheorie, Wissenschaftsphilosophie
Weitere Infos & Material
Preface
1: Categories
2: Abstract Structures
3: Duality
4: Groups and Categories
5: Limits and Colimits
6: Exponentials
7: Naturality
8: Categories of Diagrams
9: Adjoints
10: Monads and Algrebras
References
Solutions to Selected Exercises
Index