E-Book, Englisch, 128 Seiten, eBook
E-Book, Englisch, 128 Seiten, eBook
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-981-10-4232-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 A Review of Friction Stir Welding Pin Profile;8
2.1;Abstract;8
2.2;1 Introduction;8
2.3;2 Experimental Studies on FSW Pin Profiles;10
2.4;3 Simulation on FSW Pin Profiles;15
2.5;4 Optimization on FSW Pin Profiles;17
2.6;5 Conclusion;18
2.7;Acknowledgements;18
2.8;Appendix 1: A Summary of Experimental Study on Different Pin Profiles;19
2.9;References;23
3;2 Friction Stir Welding of Polymers: An Overview;26
3.1;Abstract;26
3.2;1 Introduction;26
3.3;2 Friction Stir Weldability of Polymers;28
3.4;3 The Research Progress in Friction Stir Welding of Polymers;29
3.4.1;3.1 Optimum Welding Parameters for the FSW of Polymers;29
3.4.2;3.2 Role of Tool Design on FSW of Polymers;33
3.4.3;3.3 Effects of External Heat Induction;35
3.4.4;3.4 Submerged FSW of Polymers;36
3.4.5;3.5 Microstructure Evolution;36
3.4.6;3.6 Elimination of Root Defect in FSW of Polymers;37
3.4.7;3.7 Effects of Crystallinity on the Properties of Polymer;38
3.4.8;3.8 Material Flow During FSW Process;39
3.5;4 Conclusions;40
3.6;5 Recommendations;40
3.7;Acknowledgements;41
3.8;References;41
4;3 Variation of Tool Offsets and Its Influence on Mechanical Properties of Dissimilar Friction Stir Welding of Aluminum Alloy 6061 and S235JR Mild Steel by Conventional Belting Milling Machine;44
4.1;Abstract;44
4.2;1 Introduction;44
4.3;2 Experimental Procedure;46
4.4;3 Results;47
4.4.1;3.1 Effect of Tool Offset;47
4.4.1.1;3.1.1 Tool Offset +0.2 mm;47
4.4.1.2;3.1.2 Tool Offset 0 mm;48
4.4.1.3;3.1.3 Tool Offset ?0.2 mm;50
4.4.2;3.2 Microhardness;51
4.5;4 Conclusions;52
4.6;References;53
5;4 Fracture Behavior of Intermetallic Compound (IMC) of Solder Joints Based on Finite Elements’ Simulation Result;55
5.1;Abstract;55
5.2;1 Introduction;55
5.3;2 Methods;56
5.3.1;2.1 FE Solder Joint Modeling;57
5.4;3 Results and Discussion;59
5.4.1;3.1 Validation of FE Model with Brown & Srawley Equation;59
5.4.2;3.2 The Effect on Different Crack Length on Fracture Parameter;59
5.4.3;3.3 The Effect on Different IMC Thickness on Fracture Parameter;60
5.4.4;3.4 The Effect on Different Young’s Modulus on Fracture Parameter;61
5.5;4 Conclusions;62
5.6;Acknowledgements;62
5.7;References;62
6;5 Effect of Isothermal Aging on Mechanical Properties of Sn-3.0Ag-0.5Cu Solder Alloy with Porous Cu Interlayer Addition;64
6.1;Abstract;64
6.2;1 Introduction;64
6.3;2 Experimental Procedures;66
6.3.1;2.1 Material Selection and Sample Preparation;66
6.3.2;2.2 Isothermal Aging and Analysis Procedure;66
6.4;3 Results and Discussion;67
6.4.1;3.1 Effect of Porous Cu Interlayer on Joint Strength During Isothermal Aging Process;67
6.4.2;3.2 Fracture Surface Analysis;68
6.5;4 Conclusions;71
6.6;Acknowledgements;71
6.7;References;71
7;6 On Amorphous Phase Formation in Dissimilar Friction Stir Welding of Aluminum to Steel;73
7.1;Abstract;73
7.2;1 Introduction;74
7.2.1;1.1 Hybrid Structure;74
7.2.2;1.2 Friction Stir Welding;75
7.2.3;1.3 Amorphous Phase;75
7.3;2 Experimental Works;77
7.4;3 Results and Discussion;78
7.5;4 Conclusion;84
7.6;References;85
8;7 Influence of Loading Rate on Deformation Behaviour and Sealing Performance of Spiral Wound Gasket in Flange Joint;86
8.1;Abstract;86
8.2;1 Introduction;87
8.3;2 Experimental Procedure;88
8.4;3 Gasket Characteristics at Different Loading Rate;90
8.5;4 Flange Joint with Gasket;90
8.5.1;4.1 FE Model of Flange Joint;91
8.6;5 Gasket Behaviour;92
8.6.1;5.1 Gasket Contact Stress Distribution;93
8.6.2;5.2 Sealing Performance;94
8.7;6 Conclusions;95
8.8;References;96
9;8 Effect of Bevel Angles on Tensile Strength of SS304 Steel Weld Joints;97
9.1;Abstract;97
9.2;1 Introduction;97
9.3;2 Experimental Procedure;100
9.3.1;2.1 Modelling;100
9.3.2;2.2 Experiment Methodology;101
9.4;3 Results and Discussion;104
9.4.1;3.1 Results;104
9.4.2;3.2 Discussion;105
9.4.2.1;3.2.1 Yield Stress;106
9.5;4 Conclusions;107
9.6;Acknowledgements;108
9.7;References;108
10;9 Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding by Calculating Temperature Dependent Friction Coefficient;109
10.1;Abstract;109
10.2;1 Introduction;110
10.3;2 Mathematical Model Description;112
10.3.1;2.1 Sliding, Sticking and Partial Sliding/Sticking Condition;112
10.4;3 Experimental Set-up;115
10.5;4 Numerical Model Description;116
10.6;5 Results and Discussion;117
10.6.1;5.1 The Effect of the Temperature in the Friction Coefficient;117
10.6.2;5.2 Temperature Distribution Results at Different Welding Stages;120
10.6.3;5.3 Temperature Profile at the Welding Cross Section;120
10.6.4;5.4 Temperature Distribution in the Top Surface;123
10.6.5;5.5 Temperature Comparison of Different Friction Coefficient Values;125
10.7;6 Conclusions;126
10.8;References;127