Automated Mathematical Induction | Buch | 978-0-7923-4010-2 | sack.de

Buch, Englisch, 222 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1130 g

Automated Mathematical Induction


<em>Nachdrucked from JOURNAL OF AUTOMATED REASONING 16:1-2, 1996</em> 1996
ISBN: 978-0-7923-4010-2
Verlag: Springer

Buch, Englisch, 222 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1130 g

ISBN: 978-0-7923-4010-2
Verlag: Springer


It has been shown how the common structure that defines a family of proofs can be expressed as a proof plan [5]. This common structure can be exploited in the search for particular proofs. A proof plan has two complementary components: a proof method and a proof tactic. By prescribing the structure of a proof at the level of primitive inferences, a tactic [11] provides the guarantee part of the proof. In contrast, a method provides a more declarative explanation of the proof by means of preconditions. Each method has associated effects. The execution of the effects simulates the application of the corresponding tactic. Theorem proving in the proof planning framework is a two-phase process: 1. Tactic construction is by a process of method composition: Given a goal, an applicable method is selected. The applicability of a method is determined by evaluating the method's preconditions. The method effects are then used to calculate subgoals. This process is applied recursively until no more subgoals remain. Because of the one-to-one correspondence between methods and tactics, the output from this process is a composite tactic tailored to the given goal. 2. Tactic execution generates a proof in the object-level logic. Note that no search is involved in the execution of the tactic. All the search is taken care of during the planning process. The real benefits of having separate planning and execution phases become appar ent when a proof attempt fails.

Automated Mathematical Induction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Induction Using Term Orders.- New Uses of Linear Arithmetic in Automated Theorem Proving by Induction.- Productive Use of Failure in Inductive Proof.- Middle-Out Reasoning for Synthesis and Induction.- A Calculus for and Termination of Rippling.- Interaction with the Boyer—Moore Theorem Prover: A Tutorial Study Using the Arithmetic—Geometric Mean Theorem.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.