Auret / Aldrich | Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods | Buch | 978-1-4471-5184-5 | sack.de

Buch, Englisch, 374 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 7872 g

Reihe: Advances in Computer Vision and Pattern Recognition

Auret / Aldrich

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods


2013
ISBN: 978-1-4471-5184-5
Verlag: Springer

Buch, Englisch, 374 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 7872 g

Reihe: Advances in Computer Vision and Pattern Recognition

ISBN: 978-1-4471-5184-5
Verlag: Springer


Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data.

This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections.

Topics and features: reviews the application of machine learning to process monitoring and fault diagnosis; discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.

This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning.

Auret / Aldrich Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction

Overview of Process Fault Diagnosis

Artificial Neural Networks

Statistical Learning Theory and Kernel-Based Methods

Tree-Based Methods

Fault Diagnosis in Steady State Process Systems

Dynamic Process Monitoring

Process Monitoring Using Multiscale Methods



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.