E-Book, Englisch, 677 Seiten, Web PDF
Reihe: IFAC Workshop Series
Atherton Multivariable Technological Systems
1. Auflage 2014
ISBN: 978-1-4832-9821-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Fourth IFAC International Symposium, Fredericton, Canada, 4-8 July 1977
E-Book, Englisch, 677 Seiten, Web PDF
Reihe: IFAC Workshop Series
ISBN: 978-1-4832-9821-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Recent results in the development and application of analysis and design techniques for the control of multivariable systems are discussed in this volume.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Multivariable Technological Systems;4
3;Copyright Page;5
4;Table of Contents;8
5;FOREWORD;12
6;CHAPTER 1. RECENT RESULTS ON DECENTRALIZED CONTROL OFLARGE SCALE MULTIVARIABLE SYSTEMS;14
6.1;1. INTRODUCTION;14
6.2;2. DEVELOPMENT;14
6.3;3. CONTROLLABILITY OF COMPOSITE SYSTEMS;15
6.4;4. STABILIZABILITY OF DECENTRALIZED SYSTEMS;16
6.5;5. SOLUTION OF THE SERVOMECHANISM PROBLEM FOR DECENTRALIZED SYSTEMS;17
6.6;6. SOLUTION OF THE TUNING REGULATOR PROBLEM FOR DECENTRALIZED SYSTEMS;19
6.7;7. EXAMPLE OF A LARGE SCALE INTERCONNECTED SYSTEM: LOAD AND FREQUENCY CONTROL OF A POWER SYSTEM;21
6.8;8. CONCLUSIONS;21
6.9;REFERENCES;21
7;CHAPTER 2. THE APPLICATION OF MULTIVARIABLE CONTROLTHEORY TO SPACECRAFT ATTITUDE CONTROL;24
7.1;ABSTRACT;24
7.2;INTRODUCTION;24
7.3;AD HOC APPROACHES TO MULTIVARIABLE SPACECRAFT CONTROL;24
7.4;EVOLUTION OF STATE ESTIMATORS FOR SPACECRAFT;26
7.5;THE APPLICATION OF OPTIMAL ESTIMATION AND CONTROL THEORY;29
7.6;THE MODELING PROBLEM;29
7.7;NEW DIRECTIONS IN MODERN CONTROL THEORY;31
7.8;CONCLUSIONS;31
7.9;REFERENCES;32
8;CHAPTER 3. THE STABILITY OF INTERACTING CONTROL LOOPS WITH AND WITHOUT DECOUPLING;34
8.1;1. PARTIAL VS. COMPLETE COUPLING;34
8.2;2. RELATIVE GAIN;34
8.3;3. DECOUPLING;35
8.4;4. CONCLUSIONS;38
8.5;5. TABLE OF SYMBOLS;38
8.6;6. REFERENCES;38
9;CHAPTER 4. PROBLEMS IN THE DESIGN OF MULTILAYER, MULTIECHELON CONTROL STRUCTURES;44
9.1;1. INTRODUCTION;44
9.2;2. MULTILAYER - MULTIECHELON HIERARCHICALCONTROL STRUCTURES;44
9.3;3, FORMAL DESCRIPTION OF MLME CONTROL PROBLEM;45
9.4;4. PROPOSED FIRST AND SECOND LAYER CONTROL STRATEGIES;47
9.5;5. SUPREMAL OPERATING STRATEGIES;50
9.6;6. CONCLUSIONS;50
9.7;7. REFERENCES;50
10;CHAPTER 5. SEQUENTIAL STABILITY AND OPTIMIZATION OFLARGE SCALE DECENTRALIZED SYSTEMS;52
10.1;1. INTRODUCTION;52
10.2;2. DEVELOPMENT;52
10.3;3. SEQUENTIAL STABLE SYNTHESIS FOR DECENTRALIZED CONTROL;53
10.4;4. SEQUENTIAL OPTIMIZATION;56
10.5;5. NUMERICAL EXAMPLE;57
10.6;6. CONCLUSIONS;58
10.7;REFERENCES;58
11;CHAPTER 6. A THREE LEVEL COSTATE PREDICTION METHOD FOR
CONTINUOUS DYNAMICAL SYSTEMS;60
11.1;1. INTRODUCTION;60
11.2;2. PROBLEM FORMULATION AND THE 3 LEVEL ALGORITHM;60
11.3;3. EXAMPLE 1 ; OPTIMAL CONTROL OF SYNCHRONOUS MACHINE EXCITATION;61
11.4;CONCLUSIONS;62
11.5;APPENDIX;62
11.6;REFERENCES;64
12;CHAPTER 7. MULTILEVEL CONSTRAINED OPTIMIZATION METHOD FOR INTERCONNECTED PLANTS USING FUNCTION CONTROL PRINCIPLE;66
12.1;I, INTRODUCTION;66
12.2;2. STATEMENT OF PROBLEM;66
12.3;3. REDUCING TO MFC PROBLEM;67
12.4;4. METHOD TO SOLVE MFC PROBLEM;67
12.5;5. SERIES CONNECTION OP PLANTS;68
12.6;6. DISCUSSION;69
12.7;REFERENCES;69
13;CHAPTER 8. A DESIGN PROCEDURE FOR HIERARCHICALLY STRUCTURED TWO-LEVEL OPTIMAL REGULATORS
WITH EXTERNAL DISTURBANCES;72
13.1;1. INTRODUCTION;72
13.2;2. GLOBAL OPTIMIZATION PROBLEM;72
13.3;3. TWO-LEVEL OPTIMIZATION METHOD;73
13.4;4. HIERARCHICALLY STRUCTURED TWO-LEVEL CONTROL SYSTEMS;75
13.5;5. CONCLUSION;76
13.6;REFERENCES;76
14;CHAPTER 9. OPTIMISATION MULTICRITERE DE SYSTEMES SOCIO-ECONOMIQUES DE GRANDES DIMENSIONS;78
14.1;1. INTRODUCTION;78
14.2;2. POSITION DU PROBLEME;78
14.3;3. UTILISATION DE LA METHODE "SURROGATE WORTH TRADE OFF"[3] (METHODE DE L'UTILITE MARGINALE
EQUIVALENTE);80
14.4;4. APPLICATION;82
14.5;5. CONCLUSION;84
14.6;REFERENCES;85
15;CHAPTER 10. HIERARCHICAL DECENTRALIZED CONTROL AND ITS APPLICATION TO MACROECONOMET
RIC SYSTEMS;86
15.1;I. INTRODUCTION;86
15.2;II. STATE SPACE REPRESENTATIONS FOR LARGE-SCALE ECONOMETRIC MODELS;86
15.3;III. HIERARCHICAL CONTROL PROBLEM;87
15.4;IV. FINAL OBSERVATIONS;91
15.5;REFERENCES;91
15.6;APPENDICES;92
16;CHAPTER 11. ON THE STEADY-STATE ACCURACY PROBLEM IN MULTIVARIABLE CONTROL
;94
16.1;1. INTRODUCTION;94
16.2;2. STATEMENT OF THE PROBLEM;94
16.3;3. THE D.C. FEEDBACK GAIN;95
16.4;4. STABILIZED HIGH-GAIN LOOP;95
16.5;5. EXAMPLES;96
16.6;6. CONCLUSIONS;98
16.7;7. REFERENCES;98
17;CHAPTER 12. EXACT AND OPTIMAL SYNTHESIS OF TRANSFER FUNCTION MATRICES
;102
17.1;INTRODUCTION;102
17.2;1. EXACT SYNTHESIS OF TRANSFER FUNCTIONS;102
17.3;2. OPTIMAL SYNTHESIS OF TRANSFER FUNCTIONS;105
17.4;GENERAL CONCLUSIONS;108
17.5;REFERENCES;108
18;CHAPTER 13. FAST AND STABLE ALGORITHMS FOR MINIMALDESIGN PROBLEMS;110
18.1;1. INTRODUCTION;110
18.2;2. PRELIMINARY REVIEW;110
18.3;3. PROPERTIES OF POPOV (ECHELON) FORM;111
18.4;4. A FAST PROJECTION METHOD;113
18.5;5. NEW TEST FOR THE EXISTENCE OF A PROPER SOLUTION;114
18.6;6. CONCLUSION;115
19;CHAPTER 14. DIAGONAL DOMINANCE USING FUNCTION MINIMIZATION ALGORITHMS
;118
19.1;1. INTRODUCTION;118
19.2;2. ACHIEVING DOMINANCE;118
19.3;3. NEW DOMINANCE ALGORITHM;119
19.4;4. IMPLEMENTATION;120
19.5;5. APPLICATIONS;121
19.6;6. CONCLUSIONS;122
19.7;7. REFERENCES;123
20;CHAPTER 15. DESIGN OF TRACKING SYSTEMS FOR A CLASS O OF MULTIVARIABLE LINEAR SYSTEMS WITH SLOW AND FAST MODES
;126
20.1;1. INTRODUCTION;126
20.2;2. DESIGN PROCEDURE;126
20.3;3. ILLUSTRATIVE EXAMPLE;128
20.4;4. CONCLUSIONS;129
20.5;REFERENCES;130
21;CHAPTER 16. A COMPUTER AIDED DESIGN METHOD OF MULTIVARIABLE SYSTEMS USING OUTPUT FEEDBACK;132
21.1;1. INTRODUCTION;132
21.2;2. THE PROBLEM AND ITS SOLUTION;132
21.3;3. THE COMPUTER PROGRAM;134
21.4;4. SPECIFIC DETAILS OF THE PROGRAM;136
21.5;5. EXAMPLE;137
21.6;6. CONCLUSIONS;138
21.7;REFERNECES;138
22;CHAPTER 17. COMPARISON SENSITIVITY DESIGN OF MULTIVARIABLE OUTPUT FEEDBACK SYSTEMS
;140
22.1;1. INTRODUCTION;140
22.2;2. CONDITIONS FOR SENSITIVITY REDUCTION;140
22.3;3. CONSTRUCTION OF SENSITIVITY REDUCING COMPENSATORS;142
22.4;4. DESIGN PROCEDURE AND EXAMPLES;145
22.5;5. CONCLUSIONS;147
22.6;References.;147
23;CHAPTER 18. DESIGN OF MULTIVARIABLE PID CONTROLLERS WITH APPLICATION TO A GAS-TURBINE;150
23.1;1. INTRODUCTION;150
23.2;2. PROBLEM STATEMENT;150
23.3;3. DESIGN METHOD;150
23.4;4. DESIGN OF A PID CONTROLLER FOR A GAS-TURBINE;152
23.5;5. CONCLUSIONS;153
23.6;6. REFERENCES;153
24;CHAPTER 19. MODEL DECOMPOSITION IN A SERVOCOMPENSATOR PROBLEM
;158
24.1;1. INTRODUCTION;158
24.2;2. A SERVOCOMPENSATOR PROBLEM;158
24.3;3. MODEL DECOMPOSITION IN A FREQUENCY-DOMAIN;159
24.4;REFERENCES;160
25;CHAPTER 20. DESIGN OF LINEAR MULTIVARIABLE SYSTEMS FOR STABILITY UNDER LARGE PARAMETER UNCERTAINTY
;162
25.1;SUMMARY;162
25.2;1. INTRODUCTION;162
25.3;2. THE EXTENDED SEQUENTIAL RETURN DIFFERENCE METHOD;162
25.4;3. STABILIZATION UNDER UNCERTAINTY;165
25.5;4. APPLICATION OF THE SRD METHOD TO LOW FREQUENCY PERFORMANCE DESIGN
;168
25.6;5. CONCLUSIONS;170
25.7;REFERENCES;170
26;CHAPTER 21. TABLEAU METHODS FOR ANALYSIS AND DESIGN OFLINEAR SYSTEMS;172
26.1;1. INTRODUCTION;172
26.2;2. A CANONICAL FORM;173
26.3;3. SUPREMAL (A,B) - INVARIANT SUBSPACES;174
26.4;4. THE SUPREMAL CONTROLLABILITY SUBSPACE;176
26.5;5. SYSTEM ZEROS;176
26.6;6. SYSTEM INVERSES;177
26.7;REFERENCES;178
27;CHAPTER 22. BOND GRAPH MODELLING TECHNIQUES APPLIED TOA TAPE DRIVE SYSTEM;180
27.1;1. INTRODUCTION;180
27.2;2. BOND GRAPHS;180
27.3;3. THE TAPE-DRIVE SYSTEM;181
27.4;4. THE BOND GRAPH APPROACH;182
27.5;5. CONCLUSIONS;186
27.6;6. REFERENCES;186
28;CHAPTER 23. DESIGN OF OPTIMAL STATE-OBSERVERS AND ITS APPLICATION TO MAGLEV VEHICLE SUSPENSION CONTROL;188
28.1;1. INTRODUCTION;188
28.2;2. PROBLEM STATEMENT;188
28.3;3. THEORY OF OPTIMAL STATE-OBSERVERS;189
28.4;4. OBSERVERS FOR DISTURBANCE REJECTION AND TRACKING CONTROL PROBLEMS
;190
28.5;5. MAGLEV VEHICLE SUSPENSION CONTROL;191
28.6;REFERENCES;194
29;CHAPTER 24. STABILITY CRITERIA FOR MULTIPLE - LOOP NONLINEAR FEEDBACK SYSTEMS
;196
29.1;1. INTRODUCTION;196
29.2;2. DIRECT NORM CALCULATION;198
29.3;3. DEPARTURE FROM NORMALITY;198
29.4;4. COMPARISON WITH OTHER RESULTS;200
29.5;ACKNOWLEDGEMENT;201
29.6;REFERENCES;201
30;CHAPTER 25. ADAPTIVE OBSERVER AND IDENTIFIER DESIGN FOR MULTI-INPUT
MULTI-OUTPUT SYSTEMS;202
30.1;1. INTRODUCTION;202
30.2;2. STATEMENT OF THE PROBLEM;202
30.3;3. DEVELOPMENT OF EQUIOBSERVABLE CANONICAL FORMS;203
30.4;4. DESIGN OF ADAPTIVE OBSERVER AND IDENTIFIER;204
30.5;5. NUMERICAL EXAMPLE;207
30.6;6. CONCLUSIONS;207
30.7;REFERENCES;208
30.8;APPENDIX A;208
31;CHAPTER 26. A MINIMUM TIME ADAPTIVE OBSERVER FOR LINEAR DISCRETE
SYSTEMS;210
31.1;1. INTRODUCTION;210
31.2;2. PROBLEM STATEMENT AND IDENTIFICATION CANONICAL FORM;210
31.3;3. MINIMUM TIME SYSTEM IDENTIFICATION;211
31.4;4. IMPLEMENTATION OF MINIMUM TIME SYSTEM IDENTIFICATION AND STATE OBSERVATION PROCEDURES
;213
31.5;5. EXAMPLE;214
31.6;6. CONCLUSION;214
31.7;REFERENCES;216
32;CHAPTER 27. THE DESIGN OF DYNAMIC COMPENSATORS FOR LINEAR MULTIVARIABLE SYSTEMS
;218
32.1;1. INTRODUCTION;218
32.2;2. PROBLEM FORMULATION;219
32.3;3. FORMULATION OF NECESSARY CONDITIONS;220
32.4;4. ANALYSIS OF THE NECESSARY CONDITIONS;220
32.5;5. DISCUSSION AND EXAMPLE;223
32.6;6. CONCLUSIONS;225
32.7;Acknowledgement.;225
32.8;REFERENCES;225
33;CHAPTER 28. THE COMPATIBILITY OF REGULATOR TO THE VARIATION OF PLANT DYNAMICS
;228
33.1;1. INTRODUCTION;228
33.2;2. COMPATIBILITY OF OBSERVER TO PLANT;228
33.3;3. THE CLASS OF PLANTS COMPATIBLE TO THE OBSERVER;229
33.4;4. THE COMPATIBILITY OF REGULATOR TO THE VARIATION OF PLANT DYNAMICS
;229
33.5;5. EXAMPLES;230
33.6;6. CONCLUSION;231
33.7;ACKNOWLEDGEMENT;231
33.8;REFERENCES;231
34;CHAPTER 29. FIXED STRUCTURE CONTROLLER FOR UNCERTAIN
SYSTEMS;232
34.1;1. INTRODUCTION;232
34.2;2. PROBLEM FORMULATION;232
34.3;3. OPTIMIZATION PROCEDURE;233
34.4;4. EXAMPLE;236
34.5;5. CONCLUSIONS;237
34.6;REFERENCES;237
35;CHAPTER 30. FREQUENCY RESPONSE METHODS IN THE DESIGN OFMULTIVARIABLE NON LINEAR FEEDBACK SYSTEMS;238
35.1;1. INTRODUCTION;238
35.2;2. LIMIT CYCLE PREDICTION IN MULTIVARIABLE SYSTEMS
;238
35.3;3. A SEQUENTIAL· COMPUTATIONAL PROCEDURE FOR PREDICTING THEORETICAL LIMIT CYCLE OPERATION IN MULTIVARIABLE FEEDBACK SYSTEMS
;239
35.4;4. SYSTEM COMPENSATION;240
35.5;5. COMPUTATIONAL METHODS;241
35.6;6. EXAMPLES OF USE;241
35.7;7. EVALUATION;242
35.8;REFERENCES;242
36;CHAPTER 31. THE NUMERICAL DESIGN OF MULTIVARIABLE NON LINEAR FEEDBACK SYSTEMS
;246
36.1;1. INTRODUCTION;246
36.2;2. THE DESIGN METHOD;246
36.3;3. THE FORMULATION OF AN INEQUALITY FOR LIMIT CYCLE
AVOIDANCE;246
36.4;4. COMPUTATIONAL METHODS;247
36.5;REFERENCES;249
37;CHAPTER 32. EMERGENCY AIR TRAFFIC CONTROL AND COOPERATIVE NONZERO SUM DIFFERENTIAL GAMES
;252
37.1;1. INTRODUCTION;252
37.2;2. THE MATHEMATICAL MODEL;252
37.3;3 . THE NECESSARY CONDITIONS FOR QPTIMALITY;254
37.4;4. THE DDP ALGORITHM;255
37.5;5. A NUMERICAL EXAMPLE;257
37.6;5. CONCLUSION;258
37.7;REFERENCES;258
38;CHAPTER 33. FUZZY SET THEORY AND ITS APPLICATIONS: A SURVEY
;260
38.1;1. INTRODUCTION;260
38.2;2. ORDINARY FINITE SET THEORY;261
38.3;3. FUZZY SETS OF A FINITE UNIVERSE;261
38.4;4. MEMBERSHIP FUNCTIONS WHEN X IS NOT FINITE;265
38.5;5. DISTANCE AND ENTROPY IN FUZZY SETS;267
38.6;6. FUZZY RELATIONS, MATRICES, AND GRAPHS;268
38.7;7. TOPOLOGICAL AND PROBABILISTIC CONNECTIONS;269
38.8;8. HEDGES AND OPERATORS REPRESENTING THEM;269
38.9;9. CONTROL SYSTEMS APPLICATIONS;270
38.10;10. CONCLUSION;270
38.11;APPENDIX;270
39;CHAPTER 34. ON THE STABILITY OF A CLASS OF INTERCONNECTED SYSTEMS. APPLICATION TO THE FORCED WORKING CONDITIONS
;274
39.1;1. INTRODUCTION;274
39.2;2. SYSTEM DESCRIPTION;274
39.3;3. STABILITY STUDY OF THE DISCONNECTED SYSTEM S.;275
39.4;4. STABILITY STUDY OF THE SYSTEM S;276
39.5;5. APPLICATION TO THE STUDY OF FORCED WORKING CONDITION
OF NON-LINEAR INTERCONNECTED SYSTEMS;276
39.6;6. CONCLUSION;277
39.7;REFERENCES;277
39.8;APPENDIX 1;277
40;CHAPTER 35. MULTIPOINT AND APPROXIMATE CONTROLLABILITY AND STABILIZABILITY OF MULTIVARIABLE SYSTEMS WITH DELAYS
;280
40.1;1. INTRODUCTION;280
40.2;2. MULTIPOINT CONTROLLABILITY;282
40.3;3. DUAL OBSERVABILITY PROBLEMS;282
40.4;4. SPECTRUM ASSIGNMENT BY STATE FEEDBACK;284
40.5;5. CHECKABLE CRITERIA;284
40.6;6. EXAMPLES;285
40.7;7. APPLICATIONS;286
40.8;REFERENCES;287
41;CHAPTER 36. COMPLETE CONTROLABILITE SUR LE GROUPE DES DEPLACEMENTS;290
41.1;1. LE PROBLEME DU"MARIAGE"DES CHAMPS DE VECTEURS;290
41.2;2. UNE PROPRIETE DE L'ALGEBRE DE LIE DES MATRICES ANTISYMETRIQUES
;292
41.3;3. CONTROLABILITE SUR LES SPHERES;293
41.4;4. CONTROLABILITE SUR LE GROUPE DES DE PLACEMENTS ET SUR Rn;293
41.5;5. APPLICATIONS;295
42;CHAPTER 37. VECTOR OPTIMIZATION OF ONE CLASS OF MULTIVARIABLE SYSTEMS;298
42.1;1. INTRODUCTION;298
42.2;2. PROBLEM STATEMENT AND TWO LEMMAS;298
42.3;3. MULTICRITERIA SIMPLEX METHOD FOR MCS-PROBLEM;299
42.4;4. DETERMINING THE SET P;300
42.5;5. A REMARK ON SELECTION OF A FINAL SOLUTION ON THE SET P;301
42.6;REFERENCES;302
43;CHAPTER 38. MULTIOBJECTIVE OPTIMIZATION WITH SEPARATION OF DIFFERENT PERFORMANCE CRITERIAS
;304
43.1;1. INTRODUCTION;304
43.2;2. MATHEMATICAL MODEL OF THE PROBLEM AND THE DEFINITION OF POLYOPTIMAL CONTROL;305
43.3;3. EXAMPLE;308
43.4;4. CONCLUSIONS;311
43.5;REFERENCES;311
44;CHAPTER 39. MINIMALITY ANALYSIS OF INTERCONNECTED SYSTEMS BY THE LAURENT EXPANSION OF THE TRANSFER MATRICES;312
44.1;1. INTRODUCTION;312
44.2;2. DEFINITIONS AND ELEMENTARY PROPERTIES;312
44.3;3. MINIMALITY CONDITIONS;314
44.4;4. COMPUTATIONAL ASPECTS AND EXAMPLE;316
44.5;5. CONCLUSIONS;317
44.6;REFERENCES;317
45;CHAPTER 40. SUR L'UTILISATION DE MODELES REDUITS DANS L'ANALYSE ET LA COMMANDE DE SYSTEMES COMPLEXES;320
45.1;1. INTRODUCTION;320
45.2;2. REPRESENTATION DES SYSTEMES PAR DES MODELES REDUITS
;320
45.3;3. COMMANDE SOUS OPTIMALE PAR AGREGATION;325
45.4;4. CONCLUSION;327
45.5;BIBLIOGRAPHIE;328
46;CHAPTER 41. CONTROLLED AND CONDITIONED INVARIANT SUBSPACES IN ANALYSIS AND SYNTHESIS OF ROBUST MULTIVARIABLE SYSTEMS
;330
46.1;1. INTRODUCTION;330
46.2;2. CONTROLLED AND CONDITIONED INVARIANTS;330
46.3;3. STABILITY OF THE INVARIANT SUBSPACES [9,6];331
46.4;4. THE STRATIFICATION OF THE INVARIANT CONTROLLABILITY SUBSPACES
;331
46.5;5. THE STRATIFICATION OF THE INVARIANT OBSERVABILITY SUBSPACES
;332
46.6;6. THE OUTPUT-INSENSITIVITY OF A TIME INVARIANT SYSTEM [12]
;333
46.7;7. CONCLUSION;333
46.8;8. REFERENCES;334
47;CHAPTER 42. RECURSIVE IDENTIFICATION OF THE PARAMETERS OFA MULTIVARIABLE SYSTEM;336
47.1;INTRODUCTION;336
47.2;STATEMENT OF THE PROBLEM;336
47.3;SYSTEM DECOMPOSITION;336
47.4;RESULTS OF SIMULATION;338
47.5;CONCLUSIONS;339
47.6;ACKNOWLEDGEMENTS;339
47.7;REFERENCES;339
48;CHAPTER 43. SOME INITIAL-VALUE METHODS FOR SEQUENTIAL ESTIMATION PROBLEMS VIA INVARIANT IMBEDDING
;342
48.1;1. INTRODUCTION;342
48.2;2. INITIAL-VALUE SYSTEM FOR ADDITIVE WHITE GAUSSIAN NOISE CASE
;342
48.3;3. INITIAL-VALUE SYSTEM FOR ADDITIVE CORRELATED COLORED GAUSSIAN NOISE CASE;345
48.4;4. NUMERICAL EXAMPLES;348
48.5;5.CONCLUSIONS;351
48.6;ACKNOWLEDGMENTS;351
48.7;REFERENCES;351
49;CHAPTER 44. IDENTIFICATION OF MULTIVARIABLE SYSTEMS THROUGH CORRELATION AND DISPERSION METHODS;352
49.1;Summary;352
49.2;1. Introduction;352
49.3;2. Problem Statement;352
49.4;3. Correlation and Dispersion Identification Equations
;353
49.5;4. Partial Moment Characteristics of Relations between Random Quantities
;354
49.6;5. Identification of a Two Variable Static Plant;356
49.7;6. Determination of Partial Correlation and Dispersion Functions of Random Functions;357
49.8;7. Identification of a Two-Variable Plant on the Knowledge of Partial Correlation and Dispersion Functions
;358
49.9;References;359
50;CHAPTER 45. OPTIMAL TEST INPUT SIGNALS FOR DETERMINATION OF THE SYSTEM CHARACTERISTICS;362
50.1;1. INTRODUCTION;362
50.2;2. PRELIMINARIES;362
50.3;3. PROBLEM STATEMENT;362
50.4;4. INPUT DESIGN PROBLEM ID1
;363
50.5;5. INPUT DESIGN PROBLEM ID2;364
50.6;REFERENCES;367
50.7;APPENDIX;367
51;CHAPTER 46. COMPUTER-AIDED IDENTIFICATION AND MULTIVARIABLE CONTROL SYSTEM DESIGN USING CONVOLUTION ALGEBRA;370
51.1;1. INTRODUCTION;370
51.2;2. THE CAIAD COMMAND LANGUAGE;370
51.3;3. DATA COLLECTION AND IDENTIFICATION;371
51.4;4. MULTIVARIABLE CONTROL SYSTEM DESIGN;372
51.5;5. ILLUSTRATION OF CAIAD CONTROLLER SYNTHESIS;373
51.6;6. CONCLUSIONS;377
51.7;7. ACKNOWLEDGEMENT;377
51.8;8. REFERENCES;377
52;CHAPTER 74. SOME POSSIBILITIES OF THE EXPERIMENTAL IDENTIFICATION OF THE TRANSFER BEHAVIOUR OF MULTIVARIABLE PLANTS;378
52.1;1. STATEMENT OF THE PROBLEM;378
52.2;2. THE CHOICE OF IDENTIFIABLE CANONICAL· MODEL SRUCTURES FOR THE TRANSFER BEHAVIOUR OF MULTIVARIABLE SYSTEMS
;378
52.3;3 . METHODS TOR THE EXPERIMENTAL IDENTIFICATION OF TRANSFER BEHAVIOUR OF MULTIVARIABLE SYSTEMS
;380
52.4;5. CONCLUSION;384
52.5;6. REFERENCES;385
53;CHAPTER 48. IDENTIFICATION AND MINIMAL REALIZATION OF MULTIVARIABLE SYSTEMS;386
53.1;1. INTRODUCTION;386
53.2;2. FORM OF THE MINIMAL REALIZATION;386
53.3;3. DEFINITIONS AND NOTATIONS;387
53.4;4. IDENTIFICATION IDENTITY;388
53.5;5. RICHNESS OF INPUT SEQUENCES;388
53.6;6. THEOREM;389
53.7;7. MINIMAL REALIZATION ALGORITHM;389
53.8;8. USE OF THE THEOREM;389
53.9;9. REFERENCES;390
54;CHAPTER 49. A REAL-TIME GENERALIZED LEAST SQUARES ESTIMATION METHOD FOR IDENTIFICATION OF LINEAR SYSTEMS;392
54.1;INTRODUCTION;392
54.2;1. PROBLEM STATEMENT;392
54.3;2. CANONICAL OPERATORIAL FORM;392
54.4;3. IDENTIFICATION ALGORITHM;393
54.5;4. EXPERIMENTAL STUDY;395
54.6;CONCLUSION;397
54.7;BIBLIOGRAPHY;397
55;CHAPTER 50. PARAMETER ESTIMATION OF STATE-SPACE MODELS FOR MULTIVARIABLE SYSTEMS WITH CORRELATION ANALYSIS AND METHOD OF LEAST SQUARES
;398
55.1;1. INTRODUCTION;398
55.2;2. FORMULATION OF THE PROBLEM;398
55.3;3. CANONICAL STATE-SPACE AND CORRESPONDINGI NPUT-OUTPUT
DESCRIPTION;399
55.4;4. IDENTIFICATION OF THE INPUT-OUTPUT DYNAMICS;401
55.5;5. IDENTIFICATION OF G AND W;404
55.6;6. SIMULATION RESULTS;405
55.7;8. CONCLUSIONS;406
55.8;ACKNOWLEDGEMENT;406
55.9;REFERENCES;407
56;CHAPTER 51. A NONLINEAR CONTROL CONCEPT FOR COMPUTER CONTROLLED MANIPULATORS
;408
56.1;1. INTRODUCTION;408
56.2;2. BASIC SYSTEM AND KINEMATIC EQUATIONS;409
56.3;3. DYNAMIC MODEL;410
56.4;4. STATE SPACE DESCRIPTION;411
56.5;5. GENERAL NONLINEAR CONTROL CONCEPT;412
56.6;6. DERIVATION DF THE CONTROL LAWS FDR THE MANIPULATOR
;413
56.7;7. SUMMARY;415
56.8;REFERENCES;416
57;CHAPTER 52. A TURBOFAN ENGINE CONTROLLER UTILIZING MULTIVARIATE FEEDBACK;418
57.1;1. INTRODUCTION;418
57.2;2. THEORETICAL BACKGROUND;418
57.3;3. FUNCTIONAL DESCRIPTION OF CONTROLLER;420
57.4;4. CONCLUSIONS;422
57.5;REFERENCES;422
58;CHAPTER 53. COMMANDE OPTIMALE DES SYSTEMES MULTIVARIABLES AVEC RETARDS. APPLICATION A UNE UNITE PILOTE DECHANGEUR DE CHALEUR;424
58.1;I. INTRODUCTION;424
58.2;II. CONDITIONS D'OPTIMALITE;424
58.3;III. ECHANGEUR DE CHALEUR;429
58.4;BIBLIOGRAPHIE;433
59;CHAPTER 54. APPLICATION OF POLYNOMIAL TECHNIQUES TO MULTIVARIABLE CONTROL OF JET ENGINES;434
59.1;SUMMARY;434
59.2;1. INTRODUCTION;434
59.3;2. THE MINIMAL DESIGN PROBLEM;434
59.4;3. JET ENGINE APPLICATION;435
59.5;4. FREE MODULAR APPROACH TO MDP;436
59.6;5. FLOATING POINT EXPERINECE;437
59.7;6. EXACT RATIONAL SOLUTION;438
59.8;7. COMPENSATOR POLE ASSIGNMENT;439
59.9;8. REMARKS;440
59.10;REFERENCES;441
60;CHAPTER 55. LEVEL REGULATION IN TWO CONNECTED STANDPIPES: A PROBLEM IN NONLINEAR MULTIVARIABLE CONTROL;444
60.1;1. INTRODUCTION;444
60.2;2. MODELLING CONSIDERATIONS;444
60.3;3. MATHEMATICAL ANALYSIS OF THE CONTROLLED PROCESS;445
60.4;4. SIMULATION AND IMPLEMENTATION;447
60.5;5. CONCLUSIONS;449
60.6;REFERENCES;449
61;CHAPTER 56. COMPUTER-AIDED DESIGN OF A MULTILEVEL INDUSTRIAL COMPLEX. "A HOT STRIP ROLLING MILL-REHEATING FURNACES-A COMPUTERIZED CONTROL SYSTEM";450
61.1;SUMMARY;450
61.2;1. THE OVERALL DESIGN PROBLEM;450
61.3;2. A SPECIFIC DESIGN PROBLEM;451
61.4;3. CONCLUSIONS;458
61.5;REFERENCES;458
62;CHAPTER 57. MULTIVARIABLE CONTROL OF A COLD IRON ORE AGGLOMERATION PLANT
;460
62.1;1. INTRODUCTION;460
62.2;2. DRUM PELLETIZING PLANT;460
62.3;3. MODELLING OF THE PELLETIZING PLANT;461
62.4;4. DRUM CIRCUIT STABILIZATION;461
62.5;5. CONTROLLER DESIGN;461
62.6;6. CONCLUSIONS;463
62.7;References;463
63;CHAPTER 58. COMPARISON AND EXPERIMENTAL EVALUATION OF MULTIVARIABLE FREQUENCY-DOMAIN DESIGN TECHNIQUES;466
63.1;1. INTRODUCTION;466
63.2;2. DESIGN OBJECTIVES;467
63.3;3. APPLICATION OF CL, INA and DNA METHODS;469
63.4;4. EXPERIMENTAL RESULTS;470
63.5;5. DISCUSSION AND CONCLUSIONS;472
63.6;REFERENCES;472
64;CHAPTER 59. COMPARISON OF DIFFERENT PARAMETER
ESTIMATION METHODS IN FLOTATION PROCESSES;476
64.1;SUMMARY;476
64.2;1. INTRODUCTION;476
64.3;2. SYSTEM DESCRIPTION;476
64.4;4. SIMULATIONS;478
64.5;5. DISCUSSION OF RESULTS;479
64.6;6. CONCLUSION;480
64.7;REFERENCES;480
64.8;APPENDIX;480
65;CHAPTER 60. MULTIVARIABLE CONTROL OF AN EVAPORATOR STATIONS CLASS;482
65.1;1· Introduction;482
65.2;2. Mathematical Model of an Evaporator Station
;482
65.3;3. Structure Design of the Optimal Multibody Evaporator Station Regulator;482
65.4;4.Decomposition of the System for Control of Multibody Evaporator Station;483
65.5;5 · Optimal Regulator forward Control Design;484
65.6;6. Model Research of the Optimal System;485
65.7;7·Conclusion;486
65.8;REFERENCES;486
66;CHAPTER 61. LOW SENSITIVITY OPTIMAL CONTROLLER FOR DIRECT CYCLE BOILING WATER REACTOR POWER PLANT;488
66.1;ABSTRACT;488
66.2;1· INTRODUCTION;488
66.3;2. DERIVATION OF SENSITIVITY INDEX;488
66.4;3 . CONTROLLER DESIGN FOR LOW SENSITIVITY OF RESPONSE;489
66.5;4. DESCRIPTION OP THE SYSTEM;489
66.6;5.
DYNAMIC SYSTEM IN STATE VARIABLE FORM;491
66.7;6. COMPUTER RESULTS;491
66.8;7. CONCLUSIONS;493
66.9;8. NOMENCLATURE;494
66.10;ACKNOWLEDGEMENT;495
66.11;REFERENCES;495
67;CHAPTER 62. SOME TECHNIQUES FOR COMPUTERIZED LMFBR SUBASSEMBLY OUTLET TEMPERATURE MONITORING BASED ON ESTIMATION THEORY;496
67.1;1. INTRODUCTION;496
67.2;2. ESTIMATION OF THE MEAN SUBASSEMBLY TEMPERATURE INCREASE;497
67.3;3. LEAST SQUARE ESTIMATION METHOD;498
67.4;4. SIGNAL PROCESSING SOFTWARE AND ITS VALIDATION;499
67.5;5. CONCLUSION;501
67.6;ACKNOWLEDGEMENTS;501
67.7;REFERENCES;501
68;CHAPTER 63. DYNAMICS AND CONTROL OF A DUAL TURBINE GENERATOR SYSTEM FOR HTGR POWER PLANT;502
68.1;1. INTRODUCTION;502
68.2;2. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL;503
68.3;3. LINEARIZATION AND MODAL ANALYSIS;504
68.4;4. MODEL REDUCTION AND PROCESS ZEROS;505
68.5;5. GOVERNOR DESIGN;506
68.6;6. CONCLUSIONS;509
68.7;REFERENCES;510
69;CHAPTER 64. SUBOPTIMAL CONTROL OF LARGE SCALE POWER SYSTEMS USING DECOMPOSITION TECHNIQUES;512
69.1;1. INTRODUCTION;512
69.2;2. OPTIMAL REGULATOR PROBLEM;512
69.3;3. DESIGN PROCEDURE FOR THE DETERMINATION OF SUBOPTIMAL CONTROL;512
69.4;4. APPLICATION TO LARGE SCALE POWER SYSTEM;514
69.5;REFERENCES;516
70;CHAPTER 65. OPTIMAL ACTIVE-REACTIVE DISPATCH IN POWER SYSTEMS: REALISTIC HYDRO-MODEL;518
70.1;1. INTRODUCTION;518
70.2;2. THE HYDRO MODEL;518
70.3;3 . THE ELECTRIC NETWORK MODEL;520
70.4;4. PROBLEM STATEMENT;521
70.5;5. A MINIMUM NORM FORMULATION;521
70.6;6. THE OPTIMAL SOLUTION;523
70.7;7. CONCLUSIONS;524
70.8;8. ACKNOWLEDGEMENTS;525
70.9;9. REFERENCES;525
71;CHAPTER 66. DYNAMIC SIMULATION OF A REBOILER;526
71.1;1. INTRODUCTION;526
71.2;2. MATHEMATICAL MODELS OF SUBSYSTEMS;526
71.3;3. MODEL IMPLEMENTATION ON A HYBRID COMPUTER;532
71.4;4. SIMULATION RESULTS;532
71.5;5. SUMMARY AND CONCLUSIONS;534
71.6;6. ACKNOWLEDGMENT;534
71.7;7. REFERENCES;534
71.8;8. NOMENCLATURE;535
72;CHAPTER 67. FEEDBACK REGULATOR DESIGN FOR SYNCHRONOUS GENERATORS USING INVERSE OPTIMAL CONTROLTHEORY;536
72.1;1. INTRODUCTION;536
72.2;2. OPTIMAL POLE POSITIONING CONTROL;536
72.3;3. LINEAR FEEDBACK CONTROLLER FOR SYNCHRONOUS GENERATOR;537
72.4;4. NONLINEAR FEEDBACK CONTROLLER FOR SYNCHRONOUS GENERATOR;539
72.5;5. CONCLUDING REMARKS;541
72.6;REFERENCES;541
73;CHAPTER 68. EVALUATION OF LIAPUNOV'S MATRIX FUNCTION OF AN INTEGRATED POWER SYSTEM APPLYING MULTI FEEDBACK CHANNEL REGULATOR;542
73.1;ABSTRACT;542
73.2;1. INTRODUCTION;542
73.3;2. EQUATIONS OF SYNCHRONOUS GENERATOR;542
73.4;3. EQUATIONS OF THE TERMINAL CONSTRAINT;543
73.5;4. DERIVATION OF EQUATIONS OF THE EXCITATION REGULATOR;545
73.6;5. SOLUTION OF SYSTEM EQUATIONS
;547
73.7;7. CONCLUSION;550
73.8;REFERENCES;550
74;CHAPTER 69. DYNAMIC BEHAVIOUR AND STABILITY OF GAS HEATED STEAM GENERATOR SYSTEMS WITH INTRINSIC FEED-BACK;552
74.1;SUMMARY;552
74.2;1. INTRODUCTION;552
74.3;2. DYNAMIC MODEL OF STEAM GENERATOR SECTIONS;552
74.4;3. COUPLING OF THE SEPERATE STEAM GENERATOR SECTIONS TO THE TOTAL STEAM GENERATOR;555
74.5;4. SIMULATION STUDIES FOR AGAS-HEATED STEAM GENERATOR CONSIDERING DIFFERENT OPERATING CONDITIONS;557
74.6;6. CONCLUSION;559
74.7;REFERENCES;560
75;CHAPTER 70. DIRECT DIGITAL CONTROL OF A THYRISTOR-CONTROLLED SYNCHRONOUS MACHINE
;562
75.1;1. ABSIRACT;562
75.2;2. INTRODUCTION;562
75.3;3. DESCRIPTION OF THE PROCESS;562
75.4;4. THE CONTROL SYSTEM;564
75.5;5. TASKS OF THE MINICOMPUTER;564
75.6;6. SOFTWARE PROGRAMMING;565
75.7;7. RESULTS;569
75.8;8. ACKNOWLEDGEMENT;569
75.9;9. REFERENCES;569
76;CHAPTER 71. NEW METHOD OF DYNAMIC STABILIZATION OF FLYING VEHICLES IN THE CASE OF LARGE PERTURBATIONS
;570
76.1;Introduction;570
76.2;Synthesis of nominal regimes;571
76.3;Synthesis of the level of adaptation;571
76.4;Synthesis of nominal flight dynamics;573
76.5;Conclusion;574
76.6;References;575
77;CHAPTER 72. VIKING ORBITER ATTITUDE CONTROL ANALYSIS;578
77.1;1. INTRODUCTION;578
77.2;2. VIKING SPACECRAFT DYNAMICAL MODELS;579
77.3;3. ATTITUDE CONTROL SYSTEM;581
77.4;4. PLATFORM ARTICULATION ANALYSIS;581
77.5;5. ANALYSIS OF PERFORMANCE FOR PERIODAFTER LANDER SEPARATION;584
77.6;6. CONCLUSIONS;585
77.7;7. ACKNOWLEDGMENTS;585
77.8;REFERENCES;585
78;CHAPTER 73. ANALYTICAL AND DESIGN ASPECTS OF PASSENGER CARRYING VEHICLES USING CONTROLLED D.C.ELECTROMAGNETIC SUSPENSION;586
78.1;1. INTRODUCTION;586
78.2;2. INTERACTION IN A MAGNETICALLY SUSPENDED BEAM;587
78.3;3. DYNAMICS OF A MAGNETICALLY SUPPORTED VEHICLE;588
78.4;4. CONTROL OF A MULTIMGNET VEHICLE;589
78.5;5. EXPERMENTAL RESULTS;591
78.6;6. SUMMARY;594
78.7;7. ACKNOWLEDGEMENTS;594
78.8;8. REFERENCES;594
79;CHAPTER 74. DIRECT IDENTIFICATION OF DYNAMICAL SYSTEMSWITH APPLICATION TO AIR-VEHICLES;596
79.1;1 . INTRODUCTION;596
79.2;2. FORMULATION OF THE PROBLEM;596
79.3;3. DESCRIPTION OF THE SYSTEM;597
79.4;4. SYSTEM IDENTIFICATION;598
79.5;5. ILLUSTRATIVE EXAMPLE;601
79.6;6. CONCLUSIONS;603
79.7;7. APPENDIX;603
79.8;REFERENCES;604
80;CHAPTER 75. PARAMETER ESTIMATING STATE RECONSTRUCTION;606
80.1;STATEMENT OF THE PROBLEM;606
80.2;OBSERVERS;607
80.3;OBSERVER DEVELOPMENT;608
80.4;OBSERVERS FOR USE IN ESTIMATION;609
80.5;PARAMETER ESTIMATION USING STATE RECONSTRUCTION
;609
80.6;ESTIMATION OF PARTIALLY MEASURED SYSTEMS
;610
80.7;SYSTEM DIAGRAMS AND EQUATION DEVELOPMENT
;611
80.8;A SECOND ORDER EXAMPLE;612
80.9;CTL-V TESTING ANALYSIS;613
80.10;CTL-V OBSERVER DESIGN;615
80.11;PHYSICAL INTERPRETATION OF THE MODEL;617
80.12;REFERENCES;619
81;CHAPTER 76. AN APPROACH TO MODEL ERROR COMPENSATION IN THE CONTROL OF NONRIGID SPACECRAFT
;622
81.1;1. INTRODUCTION;622
81.2;2. CHARACTERIZATIONS OF THE MODEL ERROR VECTORS;622
81.3;3. ORTHOGONAL FILTERS;624
81.4;4.0 Model Error Compensation in Flexible Spacecraft;627
81.5;5. CONCLUSIONS;630
81.6;REFERENCES;630
82;CHAPTER 77. DESIGN OF A DUAL CONTROLLER FOR AN UNDERWATER TOWED BODY
;632
82.1;1. INTRODUCTION;632
82.2;2. THE TOWED BODY SYSTEM;632
82.3;3. DESIGN OF OPTIMAL LINEAR CONTROLLER;633
82.4;4. OPTIMAL LINEAR CONTROLLER WITH SATURATION;634
82.5;5. RELAY CONTROL;635
82.6;6. CONCLUSIONS;636
82.7;7. ACKNOWLEDGEMENTS;636
82.8;8. REFERENCES;636
83;CHAPTER 78. DESIGN OF AIRCRAFT AUTOSTABILISATION SYSTEMS USING THE INVERSE INVERSE ARRAY METHOD;638
83.1;1. INTRODUCTION;638
83.2;2. DESIGN TECHNIQUE;638
83.3;3. MATHEMATICAL MODEL;639
83.4;4. CONTROLLER DESIGN;640
83.5;5. CONCLUSIONS;644
83.6;6. REFERENCES;644
84;CHAPTER 79. CRITICAL EVALUATION OF MULTIVARIABLE CONTROL TECHNIQUES BASED ON MAGLEV VEHICLE DESIGN;646
84.1;1. INTRODUCTION;646
84.2;2. DESIGN CRITERIA;646
84.3;3. SYSTEM CONCEPTS FOR MAGLEV VEHICLES;656
84.4;4. CONCLUSIONS;659
84.5;ACKNOWLEDGEMENT;659
84.6;REFERENCES;659
85;CHAPTER 80. POORLY DEFINED PROBLEMS OF STOCHASTIC OPTIMIZATION AND THEIR SOLUTION WITH THE AID OF THE PRINCIPLE OF COMPLEXITY
;662
85.1;1. PRELIMINARY REMARKS;662
85.2;2. COMPLEXITY CONCEPT;663
85.3;3. PROBLEM STATEMENT;663
85.4;4. MODIFIED CONDITIONS FOR MINIMUM OF I
;663
85.5;5. REDUCTION OF INTEGRO-DIFFERENTIAL EQUATIONS TO FREDHOLM VECTOR INTEGRAL EQUATIONS OF THE II KIND;663
85.6;6. APPROXIMATE SOLUTION;664
85.7;7. CONCLUSIONS;664
86;DISCUSSION ON THE PAPERS;666
87;AUTHOR INDEX;678