Atherton | Multivariable Technological Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 677 Seiten, Web PDF

Reihe: IFAC Workshop Series

Atherton Multivariable Technological Systems

Proceedings of the Fourth IFAC International Symposium, Fredericton, Canada, 4-8 July 1977
1. Auflage 2014
ISBN: 978-1-4832-9821-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Fourth IFAC International Symposium, Fredericton, Canada, 4-8 July 1977

E-Book, Englisch, 677 Seiten, Web PDF

Reihe: IFAC Workshop Series

ISBN: 978-1-4832-9821-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Recent results in the development and application of analysis and design techniques for the control of multivariable systems are discussed in this volume.

Atherton Multivariable Technological Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Multivariable Technological Systems;4
3;Copyright Page;5
4;Table of Contents;8
5;FOREWORD;12
6;CHAPTER 1. RECENT RESULTS ON DECENTRALIZED CONTROL OFLARGE SCALE MULTIVARIABLE SYSTEMS;14
6.1;1. INTRODUCTION;14
6.2;2. DEVELOPMENT;14
6.3;3. CONTROLLABILITY OF COMPOSITE SYSTEMS;15
6.4;4. STABILIZABILITY OF DECENTRALIZED SYSTEMS;16
6.5;5. SOLUTION OF THE SERVOMECHANISM PROBLEM FOR DECENTRALIZED SYSTEMS;17
6.6;6. SOLUTION OF THE TUNING REGULATOR PROBLEM FOR DECENTRALIZED SYSTEMS;19
6.7;7. EXAMPLE OF A LARGE SCALE INTERCONNECTED SYSTEM: LOAD AND FREQUENCY CONTROL OF A POWER SYSTEM;21
6.8;8. CONCLUSIONS;21
6.9;REFERENCES;21
7;CHAPTER 2. THE APPLICATION OF MULTIVARIABLE CONTROLTHEORY TO SPACECRAFT ATTITUDE CONTROL;24
7.1;ABSTRACT;24
7.2;INTRODUCTION;24
7.3;AD HOC APPROACHES TO MULTIVARIABLE SPACECRAFT CONTROL;24
7.4;EVOLUTION OF STATE ESTIMATORS FOR SPACECRAFT;26
7.5;THE APPLICATION OF OPTIMAL ESTIMATION AND CONTROL THEORY;29
7.6;THE MODELING PROBLEM;29
7.7;NEW DIRECTIONS IN MODERN CONTROL THEORY;31
7.8;CONCLUSIONS;31
7.9;REFERENCES;32
8;CHAPTER 3. THE STABILITY OF INTERACTING CONTROL LOOPS WITH AND WITHOUT DECOUPLING;34
8.1;1. PARTIAL VS. COMPLETE COUPLING;34
8.2;2. RELATIVE GAIN;34
8.3;3. DECOUPLING;35
8.4;4. CONCLUSIONS;38
8.5;5. TABLE OF SYMBOLS;38
8.6;6. REFERENCES;38
9;CHAPTER 4. PROBLEMS IN THE DESIGN OF MULTILAYER, MULTIECHELON CONTROL STRUCTURES;44
9.1;1. INTRODUCTION;44
9.2;2. MULTILAYER - MULTIECHELON HIERARCHICALCONTROL STRUCTURES;44
9.3;3, FORMAL DESCRIPTION OF MLME CONTROL PROBLEM;45
9.4;4. PROPOSED FIRST AND SECOND LAYER CONTROL STRATEGIES;47
9.5;5. SUPREMAL OPERATING STRATEGIES;50
9.6;6. CONCLUSIONS;50
9.7;7. REFERENCES;50
10;CHAPTER 5. SEQUENTIAL STABILITY AND OPTIMIZATION OFLARGE SCALE DECENTRALIZED SYSTEMS;52
10.1;1. INTRODUCTION;52
10.2;2. DEVELOPMENT;52
10.3;3. SEQUENTIAL STABLE SYNTHESIS FOR DECENTRALIZED CONTROL;53
10.4;4. SEQUENTIAL OPTIMIZATION;56
10.5;5. NUMERICAL EXAMPLE;57
10.6;6. CONCLUSIONS;58
10.7;REFERENCES;58
11;CHAPTER 6. A THREE LEVEL COSTATE PREDICTION METHOD FOR
CONTINUOUS DYNAMICAL SYSTEMS;60
11.1;1. INTRODUCTION;60
11.2;2. PROBLEM FORMULATION AND THE 3 LEVEL ALGORITHM;60
11.3;3. EXAMPLE 1 ; OPTIMAL CONTROL OF SYNCHRONOUS MACHINE EXCITATION;61
11.4;CONCLUSIONS;62
11.5;APPENDIX;62
11.6;REFERENCES;64
12;CHAPTER 7. MULTILEVEL CONSTRAINED OPTIMIZATION METHOD FOR INTERCONNECTED PLANTS USING FUNCTION CONTROL PRINCIPLE;66
12.1;I, INTRODUCTION;66
12.2;2. STATEMENT OF PROBLEM;66
12.3;3. REDUCING TO MFC PROBLEM;67
12.4;4. METHOD TO SOLVE MFC PROBLEM;67
12.5;5. SERIES CONNECTION OP PLANTS;68
12.6;6. DISCUSSION;69
12.7;REFERENCES;69
13;CHAPTER 8. A DESIGN PROCEDURE FOR HIERARCHICALLY STRUCTURED TWO-LEVEL OPTIMAL REGULATORS
WITH EXTERNAL DISTURBANCES;72
13.1;1. INTRODUCTION;72
13.2;2. GLOBAL OPTIMIZATION PROBLEM;72
13.3;3. TWO-LEVEL OPTIMIZATION METHOD;73
13.4;4. HIERARCHICALLY STRUCTURED TWO-LEVEL CONTROL SYSTEMS;75
13.5;5. CONCLUSION;76
13.6;REFERENCES;76
14;CHAPTER 9. OPTIMISATION MULTICRITERE DE SYSTEMES SOCIO-ECONOMIQUES DE GRANDES DIMENSIONS;78
14.1;1. INTRODUCTION;78
14.2;2. POSITION DU PROBLEME;78
14.3;3. UTILISATION DE LA METHODE "SURROGATE WORTH TRADE OFF"[3] (METHODE DE L'UTILITE MARGINALE
EQUIVALENTE);80
14.4;4. APPLICATION;82
14.5;5. CONCLUSION;84
14.6;REFERENCES;85
15;CHAPTER 10. HIERARCHICAL DECENTRALIZED CONTROL AND ITS APPLICATION TO MACROECONOMET
RIC SYSTEMS;86
15.1;I. INTRODUCTION;86
15.2;II. STATE SPACE REPRESENTATIONS FOR LARGE-SCALE ECONOMETRIC MODELS;86
15.3;III. HIERARCHICAL CONTROL PROBLEM;87
15.4;IV. FINAL OBSERVATIONS;91
15.5;REFERENCES;91
15.6;APPENDICES;92
16;CHAPTER 11. ON THE STEADY-STATE ACCURACY PROBLEM IN MULTIVARIABLE CONTROL
;94
16.1;1. INTRODUCTION;94
16.2;2. STATEMENT OF THE PROBLEM;94
16.3;3. THE D.C. FEEDBACK GAIN;95
16.4;4. STABILIZED HIGH-GAIN LOOP;95
16.5;5. EXAMPLES;96
16.6;6. CONCLUSIONS;98
16.7;7. REFERENCES;98
17;CHAPTER 12. EXACT AND OPTIMAL SYNTHESIS OF TRANSFER FUNCTION MATRICES
;102
17.1;INTRODUCTION;102
17.2;1. EXACT SYNTHESIS OF TRANSFER FUNCTIONS;102
17.3;2. OPTIMAL SYNTHESIS OF TRANSFER FUNCTIONS;105
17.4;GENERAL CONCLUSIONS;108
17.5;REFERENCES;108
18;CHAPTER 13. FAST AND STABLE ALGORITHMS FOR MINIMALDESIGN PROBLEMS;110
18.1;1. INTRODUCTION;110
18.2;2. PRELIMINARY REVIEW;110
18.3;3. PROPERTIES OF POPOV (ECHELON) FORM;111
18.4;4. A FAST PROJECTION METHOD;113
18.5;5. NEW TEST FOR THE EXISTENCE OF A PROPER SOLUTION;114
18.6;6. CONCLUSION;115
19;CHAPTER 14. DIAGONAL DOMINANCE USING FUNCTION MINIMIZATION ALGORITHMS
;118
19.1;1. INTRODUCTION;118
19.2;2. ACHIEVING DOMINANCE;118
19.3;3. NEW DOMINANCE ALGORITHM;119
19.4;4. IMPLEMENTATION;120
19.5;5. APPLICATIONS;121
19.6;6. CONCLUSIONS;122
19.7;7. REFERENCES;123
20;CHAPTER 15. DESIGN OF TRACKING SYSTEMS FOR A CLASS O OF MULTIVARIABLE LINEAR SYSTEMS WITH SLOW AND FAST MODES
;126
20.1;1. INTRODUCTION;126
20.2;2. DESIGN PROCEDURE;126
20.3;3. ILLUSTRATIVE EXAMPLE;128
20.4;4. CONCLUSIONS;129
20.5;REFERENCES;130
21;CHAPTER 16. A COMPUTER AIDED DESIGN METHOD OF MULTIVARIABLE SYSTEMS USING OUTPUT FEEDBACK;132
21.1;1. INTRODUCTION;132
21.2;2. THE PROBLEM AND ITS SOLUTION;132
21.3;3. THE COMPUTER PROGRAM;134
21.4;4. SPECIFIC DETAILS OF THE PROGRAM;136
21.5;5. EXAMPLE;137
21.6;6. CONCLUSIONS;138
21.7;REFERNECES;138
22;CHAPTER 17. COMPARISON SENSITIVITY DESIGN OF MULTIVARIABLE OUTPUT FEEDBACK SYSTEMS
;140
22.1;1. INTRODUCTION;140
22.2;2. CONDITIONS FOR SENSITIVITY REDUCTION;140
22.3;3. CONSTRUCTION OF SENSITIVITY REDUCING COMPENSATORS;142
22.4;4. DESIGN PROCEDURE AND EXAMPLES;145
22.5;5. CONCLUSIONS;147
22.6;References.;147
23;CHAPTER 18. DESIGN OF MULTIVARIABLE PID CONTROLLERS WITH APPLICATION TO A GAS-TURBINE;150
23.1;1. INTRODUCTION;150
23.2;2. PROBLEM STATEMENT;150
23.3;3. DESIGN METHOD;150
23.4;4. DESIGN OF A PID CONTROLLER FOR A GAS-TURBINE;152
23.5;5. CONCLUSIONS;153
23.6;6. REFERENCES;153
24;CHAPTER 19. MODEL DECOMPOSITION IN A SERVOCOMPENSATOR PROBLEM
;158
24.1;1. INTRODUCTION;158
24.2;2. A SERVOCOMPENSATOR PROBLEM;158
24.3;3. MODEL DECOMPOSITION IN A FREQUENCY-DOMAIN;159
24.4;REFERENCES;160
25;CHAPTER 20. DESIGN OF LINEAR MULTIVARIABLE SYSTEMS FOR STABILITY UNDER LARGE PARAMETER UNCERTAINTY
;162
25.1;SUMMARY;162
25.2;1. INTRODUCTION;162
25.3;2. THE EXTENDED SEQUENTIAL RETURN DIFFERENCE METHOD;162
25.4;3. STABILIZATION UNDER UNCERTAINTY;165
25.5;4. APPLICATION OF THE SRD METHOD TO LOW FREQUENCY PERFORMANCE DESIGN
;168
25.6;5. CONCLUSIONS;170
25.7;REFERENCES;170
26;CHAPTER 21. TABLEAU METHODS FOR ANALYSIS AND DESIGN OFLINEAR SYSTEMS;172
26.1;1. INTRODUCTION;172
26.2;2. A CANONICAL FORM;173
26.3;3. SUPREMAL (A,B) - INVARIANT SUBSPACES;174
26.4;4. THE SUPREMAL CONTROLLABILITY SUBSPACE;176
26.5;5. SYSTEM ZEROS;176
26.6;6. SYSTEM INVERSES;177
26.7;REFERENCES;178
27;CHAPTER 22. BOND GRAPH MODELLING TECHNIQUES APPLIED TOA TAPE DRIVE SYSTEM;180
27.1;1. INTRODUCTION;180
27.2;2. BOND GRAPHS;180
27.3;3. THE TAPE-DRIVE SYSTEM;181
27.4;4. THE BOND GRAPH APPROACH;182
27.5;5. CONCLUSIONS;186
27.6;6. REFERENCES;186
28;CHAPTER 23. DESIGN OF OPTIMAL STATE-OBSERVERS AND ITS APPLICATION TO MAGLEV VEHICLE SUSPENSION CONTROL;188
28.1;1. INTRODUCTION;188
28.2;2. PROBLEM STATEMENT;188
28.3;3. THEORY OF OPTIMAL STATE-OBSERVERS;189
28.4;4. OBSERVERS FOR DISTURBANCE REJECTION AND TRACKING CONTROL PROBLEMS
;190
28.5;5. MAGLEV VEHICLE SUSPENSION CONTROL;191
28.6;REFERENCES;194
29;CHAPTER 24. STABILITY CRITERIA FOR MULTIPLE - LOOP NONLINEAR FEEDBACK SYSTEMS
;196
29.1;1. INTRODUCTION;196
29.2;2. DIRECT NORM CALCULATION;198
29.3;3. DEPARTURE FROM NORMALITY;198
29.4;4. COMPARISON WITH OTHER RESULTS;200
29.5;ACKNOWLEDGEMENT;201
29.6;REFERENCES;201
30;CHAPTER 25. ADAPTIVE OBSERVER AND IDENTIFIER DESIGN FOR MULTI-INPUT
MULTI-OUTPUT SYSTEMS;202
30.1;1. INTRODUCTION;202
30.2;2. STATEMENT OF THE PROBLEM;202
30.3;3. DEVELOPMENT OF EQUIOBSERVABLE CANONICAL FORMS;203
30.4;4. DESIGN OF ADAPTIVE OBSERVER AND IDENTIFIER;204
30.5;5. NUMERICAL EXAMPLE;207
30.6;6. CONCLUSIONS;207
30.7;REFERENCES;208
30.8;APPENDIX A;208
31;CHAPTER 26. A MINIMUM TIME ADAPTIVE OBSERVER FOR LINEAR DISCRETE
SYSTEMS;210
31.1;1. INTRODUCTION;210
31.2;2. PROBLEM STATEMENT AND IDENTIFICATION CANONICAL FORM;210
31.3;3. MINIMUM TIME SYSTEM IDENTIFICATION;211
31.4;4. IMPLEMENTATION OF MINIMUM TIME SYSTEM IDENTIFICATION AND STATE OBSERVATION PROCEDURES
;213
31.5;5. EXAMPLE;214
31.6;6. CONCLUSION;214
31.7;REFERENCES;216
32;CHAPTER 27. THE DESIGN OF DYNAMIC COMPENSATORS FOR LINEAR MULTIVARIABLE SYSTEMS
;218
32.1;1. INTRODUCTION;218
32.2;2. PROBLEM FORMULATION;219
32.3;3. FORMULATION OF NECESSARY CONDITIONS;220
32.4;4. ANALYSIS OF THE NECESSARY CONDITIONS;220
32.5;5. DISCUSSION AND EXAMPLE;223
32.6;6. CONCLUSIONS;225
32.7;Acknowledgement.;225
32.8;REFERENCES;225
33;CHAPTER 28. THE COMPATIBILITY OF REGULATOR TO THE VARIATION OF PLANT DYNAMICS
;228
33.1;1. INTRODUCTION;228
33.2;2. COMPATIBILITY OF OBSERVER TO PLANT;228
33.3;3. THE CLASS OF PLANTS COMPATIBLE TO THE OBSERVER;229
33.4;4. THE COMPATIBILITY OF REGULATOR TO THE VARIATION OF PLANT DYNAMICS
;229
33.5;5. EXAMPLES;230
33.6;6. CONCLUSION;231
33.7;ACKNOWLEDGEMENT;231
33.8;REFERENCES;231
34;CHAPTER 29. FIXED STRUCTURE CONTROLLER FOR UNCERTAIN
SYSTEMS;232
34.1;1. INTRODUCTION;232
34.2;2. PROBLEM FORMULATION;232
34.3;3. OPTIMIZATION PROCEDURE;233
34.4;4. EXAMPLE;236
34.5;5. CONCLUSIONS;237
34.6;REFERENCES;237
35;CHAPTER 30. FREQUENCY RESPONSE METHODS IN THE DESIGN OFMULTIVARIABLE NON LINEAR FEEDBACK SYSTEMS;238
35.1;1. INTRODUCTION;238
35.2;2. LIMIT CYCLE PREDICTION IN MULTIVARIABLE SYSTEMS
;238
35.3;3. A SEQUENTIAL· COMPUTATIONAL PROCEDURE FOR PREDICTING THEORETICAL LIMIT CYCLE OPERATION IN MULTIVARIABLE FEEDBACK SYSTEMS
;239
35.4;4. SYSTEM COMPENSATION;240
35.5;5. COMPUTATIONAL METHODS;241
35.6;6. EXAMPLES OF USE;241
35.7;7. EVALUATION;242
35.8;REFERENCES;242
36;CHAPTER 31. THE NUMERICAL DESIGN OF MULTIVARIABLE NON LINEAR FEEDBACK SYSTEMS
;246
36.1;1. INTRODUCTION;246
36.2;2. THE DESIGN METHOD;246
36.3;3. THE FORMULATION OF AN INEQUALITY FOR LIMIT CYCLE
AVOIDANCE;246
36.4;4. COMPUTATIONAL METHODS;247
36.5;REFERENCES;249
37;CHAPTER 32. EMERGENCY AIR TRAFFIC CONTROL AND COOPERATIVE NONZERO SUM DIFFERENTIAL GAMES
;252
37.1;1. INTRODUCTION;252
37.2;2. THE MATHEMATICAL MODEL;252
37.3;3 . THE NECESSARY CONDITIONS FOR QPTIMALITY;254
37.4;4. THE DDP ALGORITHM;255
37.5;5. A NUMERICAL EXAMPLE;257
37.6;5. CONCLUSION;258
37.7;REFERENCES;258
38;CHAPTER 33. FUZZY SET THEORY AND ITS APPLICATIONS: A SURVEY
;260
38.1;1. INTRODUCTION;260
38.2;2. ORDINARY FINITE SET THEORY;261
38.3;3. FUZZY SETS OF A FINITE UNIVERSE;261
38.4;4. MEMBERSHIP FUNCTIONS WHEN X IS NOT FINITE;265
38.5;5. DISTANCE AND ENTROPY IN FUZZY SETS;267
38.6;6. FUZZY RELATIONS, MATRICES, AND GRAPHS;268
38.7;7. TOPOLOGICAL AND PROBABILISTIC CONNECTIONS;269
38.8;8. HEDGES AND OPERATORS REPRESENTING THEM;269
38.9;9. CONTROL SYSTEMS APPLICATIONS;270
38.10;10. CONCLUSION;270
38.11;APPENDIX;270
39;CHAPTER 34. ON THE STABILITY OF A CLASS OF INTERCONNECTED SYSTEMS. APPLICATION TO THE FORCED WORKING CONDITIONS
;274
39.1;1. INTRODUCTION;274
39.2;2. SYSTEM DESCRIPTION;274
39.3;3. STABILITY STUDY OF THE DISCONNECTED SYSTEM S.;275
39.4;4. STABILITY STUDY OF THE SYSTEM S;276
39.5;5. APPLICATION TO THE STUDY OF FORCED WORKING CONDITION
OF NON-LINEAR INTERCONNECTED SYSTEMS;276
39.6;6. CONCLUSION;277
39.7;REFERENCES;277
39.8;APPENDIX 1;277
40;CHAPTER 35. MULTIPOINT AND APPROXIMATE CONTROLLABILITY AND STABILIZABILITY OF MULTIVARIABLE SYSTEMS WITH DELAYS
;280
40.1;1. INTRODUCTION;280
40.2;2. MULTIPOINT CONTROLLABILITY;282
40.3;3. DUAL OBSERVABILITY PROBLEMS;282
40.4;4. SPECTRUM ASSIGNMENT BY STATE FEEDBACK;284
40.5;5. CHECKABLE CRITERIA;284
40.6;6. EXAMPLES;285
40.7;7. APPLICATIONS;286
40.8;REFERENCES;287
41;CHAPTER 36. COMPLETE CONTROLABILITE SUR LE GROUPE DES DEPLACEMENTS;290
41.1;1. LE PROBLEME DU"MARIAGE"DES CHAMPS DE VECTEURS;290
41.2;2. UNE PROPRIETE DE L'ALGEBRE DE LIE DES MATRICES ANTISYMETRIQUES
;292
41.3;3. CONTROLABILITE SUR LES SPHERES;293
41.4;4. CONTROLABILITE SUR LE GROUPE DES DE PLACEMENTS ET SUR Rn;293
41.5;5. APPLICATIONS;295
42;CHAPTER 37. VECTOR OPTIMIZATION OF ONE CLASS OF MULTIVARIABLE SYSTEMS;298
42.1;1. INTRODUCTION;298
42.2;2. PROBLEM STATEMENT AND TWO LEMMAS;298
42.3;3. MULTICRITERIA SIMPLEX METHOD FOR MCS-PROBLEM;299
42.4;4. DETERMINING THE SET P;300
42.5;5. A REMARK ON SELECTION OF A FINAL SOLUTION ON THE SET P;301
42.6;REFERENCES;302
43;CHAPTER 38. MULTIOBJECTIVE OPTIMIZATION WITH SEPARATION OF DIFFERENT PERFORMANCE CRITERIAS
;304
43.1;1. INTRODUCTION;304
43.2;2. MATHEMATICAL MODEL OF THE PROBLEM AND THE DEFINITION OF POLYOPTIMAL CONTROL;305
43.3;3. EXAMPLE;308
43.4;4. CONCLUSIONS;311
43.5;REFERENCES;311
44;CHAPTER 39. MINIMALITY ANALYSIS OF INTERCONNECTED SYSTEMS BY THE LAURENT EXPANSION OF THE TRANSFER MATRICES;312
44.1;1. INTRODUCTION;312
44.2;2. DEFINITIONS AND ELEMENTARY PROPERTIES;312
44.3;3. MINIMALITY CONDITIONS;314
44.4;4. COMPUTATIONAL ASPECTS AND EXAMPLE;316
44.5;5. CONCLUSIONS;317
44.6;REFERENCES;317
45;CHAPTER 40. SUR L'UTILISATION DE MODELES REDUITS DANS L'ANALYSE ET LA COMMANDE DE SYSTEMES COMPLEXES;320
45.1;1. INTRODUCTION;320
45.2;2. REPRESENTATION DES SYSTEMES PAR DES MODELES REDUITS
;320
45.3;3. COMMANDE SOUS OPTIMALE PAR AGREGATION;325
45.4;4. CONCLUSION;327
45.5;BIBLIOGRAPHIE;328
46;CHAPTER 41. CONTROLLED AND CONDITIONED INVARIANT SUBSPACES IN ANALYSIS AND SYNTHESIS OF ROBUST MULTIVARIABLE SYSTEMS
;330
46.1;1. INTRODUCTION;330
46.2;2. CONTROLLED AND CONDITIONED INVARIANTS;330
46.3;3. STABILITY OF THE INVARIANT SUBSPACES [9,6];331
46.4;4. THE STRATIFICATION OF THE INVARIANT CONTROLLABILITY SUBSPACES
;331
46.5;5. THE STRATIFICATION OF THE INVARIANT OBSERVABILITY SUBSPACES
;332
46.6;6. THE OUTPUT-INSENSITIVITY OF A TIME INVARIANT SYSTEM [12]
;333
46.7;7. CONCLUSION;333
46.8;8. REFERENCES;334
47;CHAPTER 42. RECURSIVE IDENTIFICATION OF THE PARAMETERS OFA MULTIVARIABLE SYSTEM;336
47.1;INTRODUCTION;336
47.2;STATEMENT OF THE PROBLEM;336
47.3;SYSTEM DECOMPOSITION;336
47.4;RESULTS OF SIMULATION;338
47.5;CONCLUSIONS;339
47.6;ACKNOWLEDGEMENTS;339
47.7;REFERENCES;339
48;CHAPTER 43. SOME INITIAL-VALUE METHODS FOR SEQUENTIAL ESTIMATION PROBLEMS VIA INVARIANT IMBEDDING
;342
48.1;1. INTRODUCTION;342
48.2;2. INITIAL-VALUE SYSTEM FOR ADDITIVE WHITE GAUSSIAN NOISE CASE
;342
48.3;3. INITIAL-VALUE SYSTEM FOR ADDITIVE CORRELATED COLORED GAUSSIAN NOISE CASE;345
48.4;4. NUMERICAL EXAMPLES;348
48.5;5.CONCLUSIONS;351
48.6;ACKNOWLEDGMENTS;351
48.7;REFERENCES;351
49;CHAPTER 44. IDENTIFICATION OF MULTIVARIABLE SYSTEMS THROUGH CORRELATION AND DISPERSION METHODS;352
49.1;Summary;352
49.2;1. Introduction;352
49.3;2. Problem Statement;352
49.4;3. Correlation and Dispersion Identification Equations
;353
49.5;4. Partial Moment Characteristics of Relations between Random Quantities
;354
49.6;5. Identification of a Two Variable Static Plant;356
49.7;6. Determination of Partial Correlation and Dispersion Functions of Random Functions;357
49.8;7. Identification of a Two-Variable Plant on the Knowledge of Partial Correlation and Dispersion Functions
;358
49.9;References;359
50;CHAPTER 45. OPTIMAL TEST INPUT SIGNALS FOR DETERMINATION OF THE SYSTEM CHARACTERISTICS;362
50.1;1. INTRODUCTION;362
50.2;2. PRELIMINARIES;362
50.3;3. PROBLEM STATEMENT;362
50.4;4. INPUT DESIGN PROBLEM ID1
;363
50.5;5. INPUT DESIGN PROBLEM ID2;364
50.6;REFERENCES;367
50.7;APPENDIX;367
51;CHAPTER 46. COMPUTER-AIDED IDENTIFICATION AND MULTIVARIABLE CONTROL SYSTEM DESIGN USING CONVOLUTION ALGEBRA;370
51.1;1. INTRODUCTION;370
51.2;2. THE CAIAD COMMAND LANGUAGE;370
51.3;3. DATA COLLECTION AND IDENTIFICATION;371
51.4;4. MULTIVARIABLE CONTROL SYSTEM DESIGN;372
51.5;5. ILLUSTRATION OF CAIAD CONTROLLER SYNTHESIS;373
51.6;6. CONCLUSIONS;377
51.7;7. ACKNOWLEDGEMENT;377
51.8;8. REFERENCES;377
52;CHAPTER 74. SOME POSSIBILITIES OF THE EXPERIMENTAL IDENTIFICATION OF THE TRANSFER BEHAVIOUR OF MULTIVARIABLE PLANTS;378
52.1;1. STATEMENT OF THE PROBLEM;378
52.2;2. THE CHOICE OF IDENTIFIABLE CANONICAL· MODEL SRUCTURES FOR THE TRANSFER BEHAVIOUR OF MULTIVARIABLE SYSTEMS
;378
52.3;3 . METHODS TOR THE EXPERIMENTAL IDENTIFICATION OF TRANSFER BEHAVIOUR OF MULTIVARIABLE SYSTEMS
;380
52.4;5. CONCLUSION;384
52.5;6. REFERENCES;385
53;CHAPTER 48. IDENTIFICATION AND MINIMAL REALIZATION OF MULTIVARIABLE SYSTEMS;386
53.1;1. INTRODUCTION;386
53.2;2. FORM OF THE MINIMAL REALIZATION;386
53.3;3. DEFINITIONS AND NOTATIONS;387
53.4;4. IDENTIFICATION IDENTITY;388
53.5;5. RICHNESS OF INPUT SEQUENCES;388
53.6;6. THEOREM;389
53.7;7. MINIMAL REALIZATION ALGORITHM;389
53.8;8. USE OF THE THEOREM;389
53.9;9. REFERENCES;390
54;CHAPTER 49. A REAL-TIME GENERALIZED LEAST SQUARES ESTIMATION METHOD FOR IDENTIFICATION OF LINEAR SYSTEMS;392
54.1;INTRODUCTION;392
54.2;1. PROBLEM STATEMENT;392
54.3;2. CANONICAL OPERATORIAL FORM;392
54.4;3. IDENTIFICATION ALGORITHM;393
54.5;4. EXPERIMENTAL STUDY;395
54.6;CONCLUSION;397
54.7;BIBLIOGRAPHY;397
55;CHAPTER 50. PARAMETER ESTIMATION OF STATE-SPACE MODELS FOR MULTIVARIABLE SYSTEMS WITH CORRELATION ANALYSIS AND METHOD OF LEAST SQUARES
;398
55.1;1. INTRODUCTION;398
55.2;2. FORMULATION OF THE PROBLEM;398
55.3;3. CANONICAL STATE-SPACE AND CORRESPONDINGI NPUT-OUTPUT
DESCRIPTION;399
55.4;4. IDENTIFICATION OF THE INPUT-OUTPUT DYNAMICS;401
55.5;5. IDENTIFICATION OF G AND W;404
55.6;6. SIMULATION RESULTS;405
55.7;8. CONCLUSIONS;406
55.8;ACKNOWLEDGEMENT;406
55.9;REFERENCES;407
56;CHAPTER 51. A NONLINEAR CONTROL CONCEPT FOR COMPUTER CONTROLLED MANIPULATORS
;408
56.1;1. INTRODUCTION;408
56.2;2. BASIC SYSTEM AND KINEMATIC EQUATIONS;409
56.3;3. DYNAMIC MODEL;410
56.4;4. STATE SPACE DESCRIPTION;411
56.5;5. GENERAL NONLINEAR CONTROL CONCEPT;412
56.6;6. DERIVATION DF THE CONTROL LAWS FDR THE MANIPULATOR
;413
56.7;7. SUMMARY;415
56.8;REFERENCES;416
57;CHAPTER 52. A TURBOFAN ENGINE CONTROLLER UTILIZING MULTIVARIATE FEEDBACK;418
57.1;1. INTRODUCTION;418
57.2;2. THEORETICAL BACKGROUND;418
57.3;3. FUNCTIONAL DESCRIPTION OF CONTROLLER;420
57.4;4. CONCLUSIONS;422
57.5;REFERENCES;422
58;CHAPTER 53. COMMANDE OPTIMALE DES SYSTEMES MULTIVARIABLES AVEC RETARDS. APPLICATION A UNE UNITE PILOTE DECHANGEUR DE CHALEUR;424
58.1;I. INTRODUCTION;424
58.2;II. CONDITIONS D'OPTIMALITE;424
58.3;III. ECHANGEUR DE CHALEUR;429
58.4;BIBLIOGRAPHIE;433
59;CHAPTER 54. APPLICATION OF POLYNOMIAL TECHNIQUES TO MULTIVARIABLE CONTROL OF JET ENGINES;434
59.1;SUMMARY;434
59.2;1. INTRODUCTION;434
59.3;2. THE MINIMAL DESIGN PROBLEM;434
59.4;3. JET ENGINE APPLICATION;435
59.5;4. FREE MODULAR APPROACH TO MDP;436
59.6;5. FLOATING POINT EXPERINECE;437
59.7;6. EXACT RATIONAL SOLUTION;438
59.8;7. COMPENSATOR POLE ASSIGNMENT;439
59.9;8. REMARKS;440
59.10;REFERENCES;441
60;CHAPTER 55. LEVEL REGULATION IN TWO CONNECTED STANDPIPES: A PROBLEM IN NONLINEAR MULTIVARIABLE CONTROL;444
60.1;1. INTRODUCTION;444
60.2;2. MODELLING CONSIDERATIONS;444
60.3;3. MATHEMATICAL ANALYSIS OF THE CONTROLLED PROCESS;445
60.4;4. SIMULATION AND IMPLEMENTATION;447
60.5;5. CONCLUSIONS;449
60.6;REFERENCES;449
61;CHAPTER 56. COMPUTER-AIDED DESIGN OF A MULTILEVEL INDUSTRIAL COMPLEX. "A HOT STRIP ROLLING MILL-REHEATING FURNACES-A COMPUTERIZED CONTROL SYSTEM";450
61.1;SUMMARY;450
61.2;1. THE OVERALL DESIGN PROBLEM;450
61.3;2. A SPECIFIC DESIGN PROBLEM;451
61.4;3. CONCLUSIONS;458
61.5;REFERENCES;458
62;CHAPTER 57. MULTIVARIABLE CONTROL OF A COLD IRON ORE AGGLOMERATION PLANT
;460
62.1;1. INTRODUCTION;460
62.2;2. DRUM PELLETIZING PLANT;460
62.3;3. MODELLING OF THE PELLETIZING PLANT;461
62.4;4. DRUM CIRCUIT STABILIZATION;461
62.5;5. CONTROLLER DESIGN;461
62.6;6. CONCLUSIONS;463
62.7;References;463
63;CHAPTER 58. COMPARISON AND EXPERIMENTAL EVALUATION OF MULTIVARIABLE FREQUENCY-DOMAIN DESIGN TECHNIQUES;466
63.1;1. INTRODUCTION;466
63.2;2. DESIGN OBJECTIVES;467
63.3;3. APPLICATION OF CL, INA and DNA METHODS;469
63.4;4. EXPERIMENTAL RESULTS;470
63.5;5. DISCUSSION AND CONCLUSIONS;472
63.6;REFERENCES;472
64;CHAPTER 59. COMPARISON OF DIFFERENT PARAMETER
ESTIMATION METHODS IN FLOTATION PROCESSES;476
64.1;SUMMARY;476
64.2;1. INTRODUCTION;476
64.3;2. SYSTEM DESCRIPTION;476
64.4;4. SIMULATIONS;478
64.5;5. DISCUSSION OF RESULTS;479
64.6;6. CONCLUSION;480
64.7;REFERENCES;480
64.8;APPENDIX;480
65;CHAPTER 60. MULTIVARIABLE CONTROL OF AN EVAPORATOR STATIONS CLASS;482
65.1;1· Introduction;482
65.2;2. Mathematical Model of an Evaporator Station
;482
65.3;3. Structure Design of the Optimal Multibody Evaporator Station Regulator;482
65.4;4.Decomposition of the System for Control of Multibody Evaporator Station;483
65.5;5 · Optimal Regulator forward Control Design;484
65.6;6. Model Research of the Optimal System;485
65.7;7·Conclusion;486
65.8;REFERENCES;486
66;CHAPTER 61. LOW SENSITIVITY OPTIMAL CONTROLLER FOR DIRECT CYCLE BOILING WATER REACTOR POWER PLANT;488
66.1;ABSTRACT;488
66.2;1· INTRODUCTION;488
66.3;2. DERIVATION OF SENSITIVITY INDEX;488
66.4;3 . CONTROLLER DESIGN FOR LOW SENSITIVITY OF RESPONSE;489
66.5;4. DESCRIPTION OP THE SYSTEM;489
66.6;5.
DYNAMIC SYSTEM IN STATE VARIABLE FORM;491
66.7;6. COMPUTER RESULTS;491
66.8;7. CONCLUSIONS;493
66.9;8. NOMENCLATURE;494
66.10;ACKNOWLEDGEMENT;495
66.11;REFERENCES;495
67;CHAPTER 62. SOME TECHNIQUES FOR COMPUTERIZED LMFBR SUBASSEMBLY OUTLET TEMPERATURE MONITORING BASED ON ESTIMATION THEORY;496
67.1;1. INTRODUCTION;496
67.2;2. ESTIMATION OF THE MEAN SUBASSEMBLY TEMPERATURE INCREASE;497
67.3;3. LEAST SQUARE ESTIMATION METHOD;498
67.4;4. SIGNAL PROCESSING SOFTWARE AND ITS VALIDATION;499
67.5;5. CONCLUSION;501
67.6;ACKNOWLEDGEMENTS;501
67.7;REFERENCES;501
68;CHAPTER 63. DYNAMICS AND CONTROL OF A DUAL TURBINE GENERATOR SYSTEM FOR HTGR POWER PLANT;502
68.1;1. INTRODUCTION;502
68.2;2. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL;503
68.3;3. LINEARIZATION AND MODAL ANALYSIS;504
68.4;4. MODEL REDUCTION AND PROCESS ZEROS;505
68.5;5. GOVERNOR DESIGN;506
68.6;6. CONCLUSIONS;509
68.7;REFERENCES;510
69;CHAPTER 64. SUBOPTIMAL CONTROL OF LARGE SCALE POWER SYSTEMS USING DECOMPOSITION TECHNIQUES;512
69.1;1. INTRODUCTION;512
69.2;2. OPTIMAL REGULATOR PROBLEM;512
69.3;3. DESIGN PROCEDURE FOR THE DETERMINATION OF SUBOPTIMAL CONTROL;512
69.4;4. APPLICATION TO LARGE SCALE POWER SYSTEM;514
69.5;REFERENCES;516
70;CHAPTER 65. OPTIMAL ACTIVE-REACTIVE DISPATCH IN POWER SYSTEMS: REALISTIC HYDRO-MODEL;518
70.1;1. INTRODUCTION;518
70.2;2. THE HYDRO MODEL;518
70.3;3 . THE ELECTRIC NETWORK MODEL;520
70.4;4. PROBLEM STATEMENT;521
70.5;5. A MINIMUM NORM FORMULATION;521
70.6;6. THE OPTIMAL SOLUTION;523
70.7;7. CONCLUSIONS;524
70.8;8. ACKNOWLEDGEMENTS;525
70.9;9. REFERENCES;525
71;CHAPTER 66. DYNAMIC SIMULATION OF A REBOILER;526
71.1;1. INTRODUCTION;526
71.2;2. MATHEMATICAL MODELS OF SUBSYSTEMS;526
71.3;3. MODEL IMPLEMENTATION ON A HYBRID COMPUTER;532
71.4;4. SIMULATION RESULTS;532
71.5;5. SUMMARY AND CONCLUSIONS;534
71.6;6. ACKNOWLEDGMENT;534
71.7;7. REFERENCES;534
71.8;8. NOMENCLATURE;535
72;CHAPTER 67. FEEDBACK REGULATOR DESIGN FOR SYNCHRONOUS GENERATORS USING INVERSE OPTIMAL CONTROLTHEORY;536
72.1;1. INTRODUCTION;536
72.2;2. OPTIMAL POLE POSITIONING CONTROL;536
72.3;3. LINEAR FEEDBACK CONTROLLER FOR SYNCHRONOUS GENERATOR;537
72.4;4. NONLINEAR FEEDBACK CONTROLLER FOR SYNCHRONOUS GENERATOR;539
72.5;5. CONCLUDING REMARKS;541
72.6;REFERENCES;541
73;CHAPTER 68. EVALUATION OF LIAPUNOV'S MATRIX FUNCTION OF AN INTEGRATED POWER SYSTEM APPLYING MULTI FEEDBACK CHANNEL REGULATOR;542
73.1;ABSTRACT;542
73.2;1. INTRODUCTION;542
73.3;2. EQUATIONS OF SYNCHRONOUS GENERATOR;542
73.4;3. EQUATIONS OF THE TERMINAL CONSTRAINT;543
73.5;4. DERIVATION OF EQUATIONS OF THE EXCITATION REGULATOR;545
73.6;5. SOLUTION OF SYSTEM EQUATIONS
;547
73.7;7. CONCLUSION;550
73.8;REFERENCES;550
74;CHAPTER 69. DYNAMIC BEHAVIOUR AND STABILITY OF GAS HEATED STEAM GENERATOR SYSTEMS WITH INTRINSIC FEED-BACK;552
74.1;SUMMARY;552
74.2;1. INTRODUCTION;552
74.3;2. DYNAMIC MODEL OF STEAM GENERATOR SECTIONS;552
74.4;3. COUPLING OF THE SEPERATE STEAM GENERATOR SECTIONS TO THE TOTAL STEAM GENERATOR;555
74.5;4. SIMULATION STUDIES FOR AGAS-HEATED STEAM GENERATOR CONSIDERING DIFFERENT OPERATING CONDITIONS;557
74.6;6. CONCLUSION;559
74.7;REFERENCES;560
75;CHAPTER 70. DIRECT DIGITAL CONTROL OF A THYRISTOR-CONTROLLED SYNCHRONOUS MACHINE
;562
75.1;1. ABSIRACT;562
75.2;2. INTRODUCTION;562
75.3;3. DESCRIPTION OF THE PROCESS;562
75.4;4. THE CONTROL SYSTEM;564
75.5;5. TASKS OF THE MINICOMPUTER;564
75.6;6. SOFTWARE PROGRAMMING;565
75.7;7. RESULTS;569
75.8;8. ACKNOWLEDGEMENT;569
75.9;9. REFERENCES;569
76;CHAPTER 71. NEW METHOD OF DYNAMIC STABILIZATION OF FLYING VEHICLES IN THE CASE OF LARGE PERTURBATIONS
;570
76.1;Introduction;570
76.2;Synthesis of nominal regimes;571
76.3;Synthesis of the level of adaptation;571
76.4;Synthesis of nominal flight dynamics;573
76.5;Conclusion;574
76.6;References;575
77;CHAPTER 72. VIKING ORBITER ATTITUDE CONTROL ANALYSIS;578
77.1;1. INTRODUCTION;578
77.2;2. VIKING SPACECRAFT DYNAMICAL MODELS;579
77.3;3. ATTITUDE CONTROL SYSTEM;581
77.4;4. PLATFORM ARTICULATION ANALYSIS;581
77.5;5. ANALYSIS OF PERFORMANCE FOR PERIODAFTER LANDER SEPARATION;584
77.6;6. CONCLUSIONS;585
77.7;7. ACKNOWLEDGMENTS;585
77.8;REFERENCES;585
78;CHAPTER 73. ANALYTICAL AND DESIGN ASPECTS OF PASSENGER CARRYING VEHICLES USING CONTROLLED D.C.ELECTROMAGNETIC SUSPENSION;586
78.1;1. INTRODUCTION;586
78.2;2. INTERACTION IN A MAGNETICALLY SUSPENDED BEAM;587
78.3;3. DYNAMICS OF A MAGNETICALLY SUPPORTED VEHICLE;588
78.4;4. CONTROL OF A MULTIMGNET VEHICLE;589
78.5;5. EXPERMENTAL RESULTS;591
78.6;6. SUMMARY;594
78.7;7. ACKNOWLEDGEMENTS;594
78.8;8. REFERENCES;594
79;CHAPTER 74. DIRECT IDENTIFICATION OF DYNAMICAL SYSTEMSWITH APPLICATION TO AIR-VEHICLES;596
79.1;1 . INTRODUCTION;596
79.2;2. FORMULATION OF THE PROBLEM;596
79.3;3. DESCRIPTION OF THE SYSTEM;597
79.4;4. SYSTEM IDENTIFICATION;598
79.5;5. ILLUSTRATIVE EXAMPLE;601
79.6;6. CONCLUSIONS;603
79.7;7. APPENDIX;603
79.8;REFERENCES;604
80;CHAPTER 75. PARAMETER ESTIMATING STATE RECONSTRUCTION;606
80.1;STATEMENT OF THE PROBLEM;606
80.2;OBSERVERS;607
80.3;OBSERVER DEVELOPMENT;608
80.4;OBSERVERS FOR USE IN ESTIMATION;609
80.5;PARAMETER ESTIMATION USING STATE RECONSTRUCTION
;609
80.6;ESTIMATION OF PARTIALLY MEASURED SYSTEMS
;610
80.7;SYSTEM DIAGRAMS AND EQUATION DEVELOPMENT
;611
80.8;A SECOND ORDER EXAMPLE;612
80.9;CTL-V TESTING ANALYSIS;613
80.10;CTL-V OBSERVER DESIGN;615
80.11;PHYSICAL INTERPRETATION OF THE MODEL;617
80.12;REFERENCES;619
81;CHAPTER 76. AN APPROACH TO MODEL ERROR COMPENSATION IN THE CONTROL OF NONRIGID SPACECRAFT
;622
81.1;1. INTRODUCTION;622
81.2;2. CHARACTERIZATIONS OF THE MODEL ERROR VECTORS;622
81.3;3. ORTHOGONAL FILTERS;624
81.4;4.0 Model Error Compensation in Flexible Spacecraft;627
81.5;5. CONCLUSIONS;630
81.6;REFERENCES;630
82;CHAPTER 77. DESIGN OF A DUAL CONTROLLER FOR AN UNDERWATER TOWED BODY
;632
82.1;1. INTRODUCTION;632
82.2;2. THE TOWED BODY SYSTEM;632
82.3;3. DESIGN OF OPTIMAL LINEAR CONTROLLER;633
82.4;4. OPTIMAL LINEAR CONTROLLER WITH SATURATION;634
82.5;5. RELAY CONTROL;635
82.6;6. CONCLUSIONS;636
82.7;7. ACKNOWLEDGEMENTS;636
82.8;8. REFERENCES;636
83;CHAPTER 78. DESIGN OF AIRCRAFT AUTOSTABILISATION SYSTEMS USING THE INVERSE INVERSE ARRAY METHOD;638
83.1;1. INTRODUCTION;638
83.2;2. DESIGN TECHNIQUE;638
83.3;3. MATHEMATICAL MODEL;639
83.4;4. CONTROLLER DESIGN;640
83.5;5. CONCLUSIONS;644
83.6;6. REFERENCES;644
84;CHAPTER 79. CRITICAL EVALUATION OF MULTIVARIABLE CONTROL TECHNIQUES BASED ON MAGLEV VEHICLE DESIGN;646
84.1;1. INTRODUCTION;646
84.2;2. DESIGN CRITERIA;646
84.3;3. SYSTEM CONCEPTS FOR MAGLEV VEHICLES;656
84.4;4. CONCLUSIONS;659
84.5;ACKNOWLEDGEMENT;659
84.6;REFERENCES;659
85;CHAPTER 80. POORLY DEFINED PROBLEMS OF STOCHASTIC OPTIMIZATION AND THEIR SOLUTION WITH THE AID OF THE PRINCIPLE OF COMPLEXITY
;662
85.1;1. PRELIMINARY REMARKS;662
85.2;2. COMPLEXITY CONCEPT;663
85.3;3. PROBLEM STATEMENT;663
85.4;4. MODIFIED CONDITIONS FOR MINIMUM OF I
;663
85.5;5. REDUCTION OF INTEGRO-DIFFERENTIAL EQUATIONS TO FREDHOLM VECTOR INTEGRAL EQUATIONS OF THE II KIND;663
85.6;6. APPROXIMATE SOLUTION;664
85.7;7. CONCLUSIONS;664
86;DISCUSSION ON THE PAPERS;666
87;AUTHOR INDEX;678



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.