Atanasova | Accountable and Explainable Methods for Complex Reasoning over Text | Buch | 978-3-031-51517-0 | sack.de

Buch, Englisch, 199 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 341 g

Atanasova

Accountable and Explainable Methods for Complex Reasoning over Text


2024
ISBN: 978-3-031-51517-0
Verlag: Springer Nature Switzerland

Buch, Englisch, 199 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 341 g

ISBN: 978-3-031-51517-0
Verlag: Springer Nature Switzerland


This thesis presents research that expands the collective knowledge in the areas of accountability and transparency of machine learning (ML) models developed for complex reasoning tasks over text. In particular, the presented results facilitate the analysis of the reasons behind the outputs of ML models and assist in detecting and correcting for potential harms. It presents two new methods for accountable ML models; advances the state of the art with methods generating textual explanations that are further improved to be fluent, easy to read, and to contain logically connected multi-chain arguments; and makes substantial contributions in the area of diagnostics for explainability approaches. All results are empirically tested on complex reasoning tasks over text, including fact checking, question answering, and natural language inference.

This book is a revised version of the PhD dissertation written by the author to receive her PhD from the Faculty of Science, University ofCopenhagen, Denmark. In 2023, it won the Informatics Europe Best Dissertation Award, granted to the most outstanding European PhD thesis in the field of computer science.


Atanasova Accountable and Explainable Methods for Complex Reasoning over Text jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Executive Summary.- Part I: Accountability for Complex Reasoning Tasks over Text.- 2. Fact Checking with Insufficient Evidence.- 3. Generating Label Cohesive and Well-Formed Adversarial Claims.- Part II: Explainability for Complex Reasoning Tasks over Text.- 4. Generating Fact Checking Explanations.- 5. Generating Fluent Fact Checking Explanations with Unsupervised Post-Editing.- 6. Multi-Hop Fact Checking of Political Claims.- Part III: Diagnostic Explainability Methods.- 7. A Diagnostic Study of Explainability Techniques for Text Classification.- 8. Diagnostics-Guided Explanation Generation.- 9. Recent Developments on Accountability and Explainability for Complex Reasoning Tasks.


Pepa Atanasova is a postdoctoral researcher at the University of Copenhagen. She has received her PhD degree at the University of Copenhagen receiving the Best Dissertation Award of Informatics Europe in 2023. Her current research focuses on explainability for machine learning models, encompassing natural language explanations, post-hoc explainability methods, and adversarial attacks as well as the principled evaluation of existing explainability techniques.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.