Aström / Wittenmark | Adaptive Systems in Control and Signal Processing 1986 | E-Book | sack.de
E-Book

E-Book, Englisch, 557 Seiten, Web PDF

Reihe: IFAC Workshop Series

Aström / Wittenmark Adaptive Systems in Control and Signal Processing 1986

Proceedings of the 2nd IFAC Workshop, Lund, Sweden, 1-3 July 1986

E-Book, Englisch, 557 Seiten, Web PDF

Reihe: IFAC Workshop Series

ISBN: 978-1-4832-9808-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This second IFAC workshop discusses the variety and applications of adaptive systems in control and signal processing. The various approaches to adaptive control systems are covered and their stability and adaptability analyzed. The volume also includes papers taken from two poster sessions to give a concise and comprehensive overview/treatment of this increasingly important field.
Aström / Wittenmark Adaptive Systems in Control and Signal Processing 1986 jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Adaptive Systems in Control and Signal Processing 1986: Proceedings of the 2nd IFAC Workshop Lund, Sweden, 1—3 July 1986
;4
3;Copyright Page;5
4;Table of Contents
;10
5;PREFACE;8
6;Table of Contents;10
7;Part 1: PLENARY PAPERS;14
7.1;Chapter 1. ADAPTIVE INVERSE CONTROL;14
7.1.1;INTRODUCTION;14
7.1.2;ADAPTIVE FILTERS;14
7.1.3;DIRECT PLANT IDENTIFICATION;15
7.1.4;INVERSE PLANT IDENTIFICATION;15
7.1.5;ADAPTIVE CONTROL OF PLANT DYNAMICS;16
7.1.6;ADAPTIVE PLANT-NOISE CANCELLING;16
7.1.7;ADAPTIVE INVERSE CONTROL;17
7.1.8;CONCLUSION;17
7.1.9;REFERENCES;17
7.2;Chapter 2. DETECTION OF CHANGES IN SIGNALS ANDSYSTEMS;20
7.2.1;PROBLEMS STATEMENT AND APPLICATIONEXAMPLES;20
7.2.2;GENERATION OF THE SIGNALS TO BEMONITORED;21
7.2.3;DESIGN OF DECISION RULES;22
7.2.4;CONCLUSION;24
7.2.5;REFERENCES;24
7.3;Chapater 3. ALGORITHMS FOR LQG SELF-TUNINGCONTROL BASED ON INPUT-OUTPUT DELTAMODELS;26
7.3.1;INTRODUCTION;26
7.3.2;ALGORITHMIC TOOLS;27
7.3.3;STATE ESTIMATION AND OUTPUT PREDICTION;27
7.3.4;JOINT PARAMETER AND STATE ESTIMATION;29
7.3.5;REFERENCES;31
7.3.6;APPENDIX - PASCAL PROCEDURES;31
7.4;Chapter 4. CONTINUOUS-TIME SELF-TUNING CONTROL— A UNIFIED APPROACH;32
7.4.1;1. INTRODUCTION;32
7.4.2;2. SMITH'S PREDICTOR;32
7.4.3;3. EMULATORS;33
7.4.4;4. SOME SPECIAL CASES.;34
7.4.5;5. ADAPTIVE EMULATORS;35
7.4.6;6. CONCLUSION;36
7.4.7;References;36
7.5;Chapter 5. A CLASS OF ROBUST ADAPTIVE CONTROLALGORITHMS;38
7.5.1;INTRODUCTION;38
7.5.2;THE PLANT MODEL;39
7.5.3;CONTROL SYSTEM DESIGN;39
7.5.4;ROBUST PARAMETER ESTIMATION;39
7.5.5;THE ROBUST ADAPTIVE CONTROLLER;40
7.5.6;WEAKLY COUPLED MULTIVARIABLE SYSTEMS;41
7.5.7;TIME DELAY SYSTEMS;42
7.5.8;CONCLUSIONS;42
7.5.9;REFERENCES;42
7.6;Chapter 6. AN ADAPTIVE CONTROLLER BASED UPONCONTINUOUS ESTIMATION OF THE CLOSEDLOOP FREQUENCY RESPONSE;44
7.6.1;1. INTRODUCTION;44
7.6.2;2. BASIC PRINCIPLES OF THE NEW ADAPTIVECONTROLLER;44
7.6.3;3. THE ESTIMATOR;45
7.6.4;4. ADAPTATION OF THE CONTROLLER;46
7.6.5;5. VERIFICATION OF THE THEORY BY EXPERIMENTS;47
7.6.6;6. CONCLUSION;47
7.6.7;7. ACKNOWLEDGEMENTS;48
7.6.8;8. REFERENCES;48
7.7;Chapter 7. A COMPARISON BETWEEN ROBUST ANDADAPTIVE CONTROL OF UNCERTAINSYSTEMS;56
7.7.1;1. INTRODUCTION;56
7.7.2;2. FUNDAMENTAL ISSUES;56
7.7.3;3. APPROACHES TO ROBUST DESIGN;57
7.7.4;4. ADAPTIVE CONTROL;57
7.7.5;5. EXAMPLES;58
7.7.6;6. ROBUST AND ADAPTIVE CONTROL;61
7.7.7;7. REFERENCES;61
7.8;Chapter 8. A ROBUST POLE PLACEMENT ALGORITHMFOR ADAPTIVE CONTROL;62
7.8.1;INTRODUCTION;62
7.8.2;DESCRIPTION OF PROBLEM;62
7.8.3;METHOD;63
7.8.4;APPLICATION TO THE DIOPHANTINE EQUATION;63
7.8.5;REFERENCES;65
7.9;Chapter 9. AN ALGORITHM FOR ADAPTATION OF AROBUST CONTROLLER TO REDUCED PLANTUNCERTAINTY;68
7.9.1;1. INTRODUCTION;68
7.9.2;2. STATEMENT OF THE PROBLEM;68
7.9.3;3. THE FORM OF THE FULL UNCERTAINTY SOLUTION.;69
7.9.4;4. LOW FREQUENCY ADAPTATION;70
7.9.5;5. HIGH FREQUENCY ADAPTATION;70
7.9.6;6 PREFILTER DESIGN;71
7.9.7;7. A DESIGN EXAMPLE;71
7.9.8;8. CONCLUSIONS;71
7.9.9;REFERENCES;73
7.10;Chapter 10. ROBUST DESIGN OF ADAPTIVE CONTROLSYSTEMS USING CONIC SECTOR THEORY;74
7.10.1;INTRODUCTION;74
7.10.2;ROBUST STABILITY RESULTS;74
7.10.3;ILLUSTRATIVE EXAMPLE;76
7.10.4;CONCLUSIONS;78
7.10.5;REFERENCES;78
7.11;Chapter 11. ADAPTIVE GENERALIZED PREDICTIVECONTROL WITH MULTIPLE REFERENCEMODEL;80
7.11.1;INTRODUCTION;80
7.11.2;MONO INPUT MONO OUTPUT SYSTEMS;81
7.11.3;ONE INPUT MOLTI OUTPUT SYSTEMS;83
7.11.4;MULTI INPUT MULTI OUTPUT SYSTEMS;84
7.11.5;NUMERICAL AND EXPERIMENTAL RESULTS;84
7.11.6;REFERENCES;85
7.12;Chapter 12. EXTENDED IMPLICIT MODELS ANDAPPLICATION TO LQ ADAPTIVEOPTIMIZATION;86
7.12.1;INTRODUCTION;86
7.12.2;A BRIEF SUMMARY OF PREVIOUS IMPLICITMODELLING THEORY;86
7.12.3;EXTENDED IMPLICIT MODELS;87
7.12.4;LQ OPTIMIZATION IN PRESENCE OF DITHERNOISE;88
7.12.5;M-STEP ADAPTIVE LQ OPTIMIZATION BASEDON THE IDENTIFICATION OF EXTENDED IMPLICITMODELS;89
7.12.6;VARIATIONAL ADAPTIVE CONTROL SCHEME;90
7.12.7;CONCLUSIONS;92
7.12.8;REFERENCES;92
7.13;Chapter 13. SINGLE PREDICTOR VS. MULTI PREDICTORBASED LONG-RANGE SELF-TUNINGADAPTIVE CONTROL;94
7.13.1;INTRODUCTION;94
7.13.2;LQ ADAPTIVE CONTROL BYMULTIPLE PREDICTORS;94
7.13.3;COMPARISON WITH A SINGLE-PREDICTORBASED SELF-TUNING REGULATOR;97
7.13.4;CONCLUSIONS AND OPEN PROBLEMS;97
7.13.5;REFERENCES;97
7.13.6;APPENDIX;98
7.14;Chapter 14. POLYNOMIAL LQ CONTROL SYNTHESIS FORDELTA-OPERATOR MODELS;100
7.14.1;1. INTRODUCTION;100
7.14.2;2. LQ OPTIMAL CONTROL PROBLEM;100
7.14.3;3. OPERATORS USED FOR A PLANT DESCRIPTION;101
7.14.4;4. ALGORITHMS OF THE SYNTHESIS;102
7.14.5;5. EXAMPLE;103
7.14.6;6. CONCLUSION;104
7.14.7;REFERENCES;104
7.15;Chapter 15. HYBRID ADAPTIVE REGULATION FORCONTINUOUS TIME SYSTEMS;106
7.15.1;1. Introduction;106
7.15.2;2. Hybrid Adaptive Regulator (HAR);106
7.15.3;3. Stability Result;107
7.15.4;4. Conclusions;110
7.15.5;5. References;110
7.16;Chapter 16. ON PARALLEL FEEDFORWARD ANDSIMPLIFIED ADAPTIVE CONTROL;112
7.16.1;INTRODUCTION;112
7.16.2;THE SIMPLIFIED ADAPTIVE CONTROL PROBLEM;112
7.16.3;EXAMPLES;115
7.16.4;REFERENCES;116
7.17;Chapter 17. ADAPTIVE CONTROL BASED ONORTHONORMAL SERIES REPRESENTATION;118
7.17.1;1. INTRODUCTION;118
7.17.2;2. MODELLING AND CONTROL USING A LAGUERRENETWORK;118
7.17.3;3. A DETERMINISTIC EXPLICIT SELF-TUNER;121
7.17.4;4. PRACTICAL ASPECTS AND IMPLEMENTATION;122
7.17.5;5. CONCLUSIONS;122
7.17.6;6. REFERENCES;122
7.18;Chapter 18. SELF-TUNING CONTROL OF PARABOLICDISTRIBUTED PARAMETER SYSTEMS;128
7.18.1;INTRODUCTION;128
7.18.2;PROBLEM DESCRIPTION;128
7.18.3;MODEL DISCRETIZATION;128
7.18.4;MULTIVARIABLE SELF-TUNING CONTROLLER;129
7.18.5;TWOSELF PROGRAM;129
7.18.6;TEMPERATURE CONTROL OF A PLASTICSEXTRUDER;129
7.18.7;SIMULATION RESULTS;130
7.18.8;CONCLUSIONS;130
7.18.9;REFERENCES;130
7.19;Chapter 19. A SELF-TUNING CONTROLLER FOR MIMONONLINEAR SYSTEMS;132
7.19.1;ABSTRACT;132
7.19.2;1. INTRODUCTION;132
7.19.3;2. SYSTEM DESCRIPTION;132
7.19.4;3. A NEW SELF-TUNING CONTROLLER;133
7.19.5;4. SIMULATION RESULTS;135
7.19.6;5. CONCLUSIONS;136
7.19.7;ACKNOWLEDGMENTS;136
7.19.8;REFERENCES;136
7.20;Chapter 20. DISTURBANCE DECOUPLING ADAPTIVECONTROL;138
7.20.1;1. INTRODUCTION: IF FEEDFORWARD IS SO GOOD, WHY IS ITNOT USED MORE FREQUENTLY?;138
7.20.2;2. ALTERNATIVES FOR ADAPTIVE CONTROL;139
7.20.3;3. SIMULATIONS;141
7.20.4;4. CONCLUSIONS;143
7.20.5;REFERENCES;143
7.21;Chapter 21. DISCRETE-TIME ADAPTIVE CONTROL FORPERIODICALLY TIME-VARYING SYSTEMS;144
7.21.1;INTRODUCTION;144
7.21.2;PROBLEM STATEMENT;144
7.21.3;ADAPTIVE CONTROL ALGORITHM;145
7.21.4;CONVERGENCE ANALYSIS;146
7.21.5;CONCLUSION;148
7.21.6;REFERENCES;148
7.22;Chapter 22. FIXED-POINT THEOREMS FOR STABILITYANALYSIS OF ADAPTIVE SYSTEMS;150
7.22.1;1. INTRODUCTION;150
7.22.2;2. THE TUNED SYSTEM AND LINEARIZATION;150
7.22.3;3. THE LINEARIZED RESPONSE;152
7.22.4;4. TRANSIENT ANALYSIS;153
7.22.5;CONCLUSIONS;154
7.22.6;REFERENCES;154
7.23;Chapter 23. ROBUST ADAPTIVE CONTROL USINGREDUCED ORDER MODELS;156
7.23.1;INTRODUCTION;156
7.23.2;ROBUST ADAPTIVE CONTROL IN THE PRESENCE OFBOUNDED DISTURBANCES;156
7.23.3;ROBUST ADAPTIVE CONTROL USING REDUCEDORDER MODELS;158
7.23.4;REFERENCES;160
7.24;Chapter 24. ON THE ASYMPTOTIC BEHAVIOUR OF ANADAPTIVE POLE-PLACEMENT ALGORITHM;162
7.24.1;INTRODUCTION;162
7.24.2;PROBLEM FORMULATION;162
7.24.3;GLOBAL STABILITY;163
7.24.4;CONSISTENCY OF THE REGULATOR PARAMETERESTIMATES;164
7.24.5;PERSISTENCE OF EXCITATION;166
7.24.6;CONCLUSION;167
7.24.7;REFERENCES;167
7.25;Chapter 25. STABILITY BOUNDS FOR SLOWADAPTATION: AN INTEGRAL MANIFOLDAPPROACH;168
7.25.1;INTRODUCTION;168
7.25.2;1. A REDUCED ORDER PARAMETRIZATION;168
7.25.3;2. UPDATE LAW;169
7.25.4;3. INTEGRAL MANIFOLD FOR DISCRETESLOW ADAPTATION;170
7.25.5;4. STABILITY IN THE SLOW MANIFOLD;171
7.25.6;5. AN INSTABILITY RESULT;172
7.25.7;6. DISCUSSION;172
7.25.8;ACKNOWLEDGEMENTS;173
7.25.9;REFERENCES;173
7.26;Chapter 26. REVISITING THE MIT RULE FOR ADAPTIVECONTROL;174
7.26.1;ABSTRACT;174
7.26.2;1 . INTRODUCTION;174
7.26.3;2. THE MIT RULE;174
7.26.4;3. INSTABILITY MECHANISMS;175
7.26.5;4. STABILITY ANALYSIS VIA AVERAGING:RESCUING THE MIT RULE;176
7.26.6;5. CONSEQUENCES AND CONCLUSIONS;177
7.26.7;ACKNOWLEDGEMENTS;178
7.26.8;REFERENCES;178
7.27;Chapter 27. DESIGN OF ADAPTIVE ALGORITHMS FORTHE TRACKING OF TIME VARYING SYSTEMS;180
7.27.1;1 .INTRODUCTION;180
7.27.2;TWO TYPICAL EXAMPLES;180
7.27.3;THEORETICAL PEREQUISITES;181
7.27.4;2.MONOSTEP ADAPTIVE ALGORITHMS;182
7.27.5;MAIN THEOREMS;183
7.27.6;APPLICATIONS;185
7.27.7;MULTISTEP ADAPTIVE ALGORITHMS;186
7.27.8;CONCLUSION;186
7.27.9;REFERENCES;186
7.28;Chapter 28. STABLE ADAPTIVE OBSERVERS FORNONLINEAR TIME-VARYING SYSTEMS;188
7.28.1;ABSTRACT;188
7.28.2;1. INTRODUCTION;188
7.28.3;2. TRANSFORMATION TO A CANONICAL REPRESENTATION;189
7.28.4;3. THE ADAPTIVE OBSERVER;189
7.28.5;4. STABILITY CONDITIONS FOR THE ADAPTIVE OBSERVER;190
7.28.6;5. APPLICATION TO BILINEAR SYSTEMS;191
7.28.7;6. APPLICATION TO A NONLINEAR BIQTECHNQLOGICALSYSTEM;192
7.28.8;7. CONCLUSIONS;192
7.28.9;ACKNOWLEDGEMENTS;193
7.28.10;REFERENCES;193
7.29;Chapter 29. PARAMETER TRACKING OF TIME-VARYINGLINEAR SYSTEMS WITH NON-GAUSSIANDRIVING NOISE;194
7.29.1;INTRODUCTION;194
7.29.2;THE NOISE MODEL;194
7.29.3;TIME-VARYING SYSTEMS;196
7.29.4;ABOUT THE PROOF;197
7.29.5;CONCLUSIONS;197
7.29.6;REFERENCES;197
7.30;Chapter 30. TRACKING OF NONSTATIONARY SYSTEMSBY MEANS OF DIFFERENT PREDICTIONERROR DIRECTION FORGETTINGTECHNIQUES;198
7.30.1;1.INTRODUCTION;198
7.30.2;2.RECURSIVE LEAST-SQUARESWITH FORGETTING FACTORS;199
7.30.3;3.SIMULATION RESULTS;200
7.30.4;ACKNOWLEDGEMENTS;203
7.30.5;REFERENCES;203
7.31;Chapter 31. DIRECTIONAL TRACKING OF REGRESSIONTYPEMODEL PARAMETERS;204
7.31.1;INTRODUCTION;204
7.31.2;REGRESSION-TYPE MODELS;204
7.31.3;BAYESIAN ESTIMATION;205
7.31.4;RESTRICTED EXPONENTIAL FORGETTING;205
7.31.5;NOVEL ALGORITHM OFPARAMETER TRACKING;206
7.31.6;SPECIAL ALGORITHMS;207
7.31.7;ILLUSTRATIVE EXAMPLE;208
7.31.8;CONCLUDING REMARKS;209
7.31.9;REFERENCES;209
7.32;Chapter 32. REQUIREMENTS OF ADAPTIVE TECHNIQUESFOR ENHANCED CONTROL OF LARGEDIESEL ENGINES;210
7.32.1;1. INTRODUCTION;210
7.32.2;2. NONLINEAR AND LINEARIZED DYNAMICS;210
7.32.3;3. CONTROL PROPERTIES;212
7.32.4;4. COMPLEX SYSTEMS;213
7.32.5;5. ADAPTIVE TECHNIQUES AND SIGNALPROCESSING;214
7.32.6;6. CONCLUSION;215
7.32.7;7. ACKNOWLEDGEMENTS;215
7.32.8;8. REFERENCES;215
7.33;Chapter 33. SELF-TUNING REGULATORS USED FOR SHIPCOURSE KEEPING;216
7.33.1;1. INTRODUCTION;216
7.33.2;2. MATHEMATICAL MODELS;217
7.33.3;3. KAIMAN FILTER;217
7.33.4;4. CONTROL ALGORITHMS;218
7.33.5;5. SIMULATIONS;218
7.33.6;6. SEA EXPERIMENTS;220
7.33.7;7. CONCLUSION;221
7.33.8;REFERENCES;221
7.34;Chapter 34. LINEAR QUADRATIC SELF-TUNINGREGULATORS IN PAPER-MACHINECONTROL SYSTEMS;222
7.34.1;INTRODUCTION;222
7.34.2;CONTROLLED PROCESS;222
7.34.3;CONTROL STRUCTURE;222
7.34.4;ADAPTIVE REGULATOR;223
7.34.5;SOFTWARE ENVIRONMENT;223
7.34.6;PRACTICAL IMPLEMENTATION;224
7.34.7;PRACTICAL RESULTS ANDFUTURE DEVELOPMENT;224
7.34.8;REFERENCES;224
7.35;Chapter 35. APPLICATION OF ADAPTIVE PREDICTIVECONTROL FOR THE BOTTOMTEMPERATURE OF A GLASS FURNACE;226
7.35.1;1. INTRODUCTION;226
7.35.2;2. DESCRIPTION OF THE PROCESS AND OF THEHIERARCHICAL CONTROL STRUCTURE;226
7.35.3;3. CONTROL ALGORITHM;227
7.35.4;4. REAL TIME OPERATION RESULTS;229
7.35.5;CONCLUSION;229
7.35.6;REFERENCES;229
7.36;Chapter 36. ON THE APPLICABILITY OF ADAPTIVECONTROL;232
7.36.1;1. INTRODUCTION;232
7.36.2;2. PROBLEM FORMULATION;233
7.36.3;3. THE ADAPTIVE CONTROL APPLICABILITY;235
7.36.4;CONCLUSIONS;237
7.36.5;REFERENCES;238
7.37;Chapter 37. AN ADAPTIVE CONTROLLER FOR SKODATWENTY-ROLLS COLD ROLLING MILLS;240
7.37.1;INTRODUCTION;240
7.37.2;THE ROLLING MILL;240
7.37.3;CONTROLLER DESIGN;241
7.37.4;MATHEMATICAL MODEL;241
7.37.5;HARDWARE AND SOFTWARE;241
7.37.6;EXPERIENCE;242
7.37.7;CONCLUSIONS;242
7.37.8;REFERENCES;242
7.38;Chapter 38. ADAPTIVE MINIMUM ENERGY CONTROL OFLARGE SHIP DIESEL ENGINES;244
7.38.1;1. INTRODUCTION;244
7.38.2;2. ENGINE DESCRIPTION;244
7.38.3;3. STEADY STATE ENGINE MODELLING;245
7.38.4;4. DYNAMIC ENGINE MODELLING;246
7.38.5;5. ADAPTIVE REGULATOR STRATEGY;246
7.38.6;6. CONCLUSIONS;249
7.38.7;7. ACKNOWLEDGEMENTS;249
7.38.8;8. REFERENCES;249
7.39;Chapter 39. ADAPTIVE CONTROL OF MISSILE ATTITUDE;250
7.39.1;INTRODUCTION;250
7.39.2;FIXED GAIN CONTROL SYSTEM MODEL;250
7.39.3;ADAPTIVE PROPOSAL;252
7.39.4;RESULTS;253
7.39.5;CONSENTS AND CONCLUSIONS;254
7.39.6;REFERENCES;255
7.40;Chapter 40. A MICROPROCESSOR IMPLEMENTATION OFA SELF-TUNING CONTROLLER;256
7.40.1;INTRODUCTION;256
7.40.2;SELF-TUNING ALGORITHM;256
7.40.3;IMPLEMENTATION;257
7.40.4;EXPERIMENTAL RESULTS;258
7.40.5;DISCUSSION AND CONCLUSIONS;260
7.40.6;ACKNOWLEDGMENT;260
7.40.7;REFERENCES;260
7.41;Chapter 41. IMPLEMENTATION OF FEEDBACK/FEEDFORWARD ADAPTIVE CONTROLLERSIN CHEMICAL PROCESSES;262
7.41.1;INTRODUCTION;262
7.41.2;THE ALGORITHM;262
7.41.3;RESULTS AND DISCUSSION;263
7.41.4;CONCLUSION;264
7.41.5;REFERENCES;264
7.42;Chapter 42. NON-DIMENSIONAL REDUCED PARAMETERSELF-TUNING CONTROL OF HEATEXCHANGERS BY USING IDENTIFIEDDYNAMICS FROM STEADY-STATE DATA;266
7.42.1;1. INTRODUCTION;266
7.42.2;2. BASIC EQUATIONS AND NOMENCLATURE;266
7.42.3;3. PI CONTROL LAW WHICH ASSIGNSFIXED DAMPING RATIO;267
7.42.4;4. DETERMINATION 0F;268
7.42.5;5. PROCEDURE OF SELF-TUNING CONTROL;269
7.42.6;6. EXPERIMENTAL RESULTS;270
7.42.7;7. CONCLUSIONS;271
7.42.8;REFERENCES;271
7.43;Chapter 43. ON ADAPTIVE CONTROL OF THERMALPROCESSES BY A PREDICTIVE3-LEVEL-CONTROLLER;272
7.43.1;1. INTRODUCTION;272
7.43.2;2. CONCEPT OF ADAPTIVE PREDICTIVE SWITCHINGCONTROL;272
7.43.3;3. IDENTIFICATION OF THE THERMAL PROCESS;273
7.43.4;4. PREDICTIVE CONTROL STRATEGY;274
7.43.5;5. EVALUATION OF THE PREDICTED OUTPUT SEQUENCES;275
7.43.6;6. RESULTS FORM DIGITAL SIMULATIONS;275
7.43.7;7. CONCLUSIONS;275
7.43.8;8. REFERENCES;275
7.44;Chapter 44. EXPERIMENTAL STUDY ON DISCRETE TIMEADAPTIVE CONTROL OF AN INDUSTRIALROBOT ARM;278
7.44.1;INTRODUCTION;278
7.44.2;EXPERIMENTAL APPARATUS;278
7.44.3;ROBOT ARM CONTINUOUS TIME MODEL;279
7.44.4;DISCRETE TIME CONTROLLER DESIGN;279
7.44.5;RESULTS AND DISCUSSION;281
7.44.6;CONCLUSIONS AND FURTHER WORK;281
7.44.7;REFERENCES;282
7.45;Chapter 45. ADAPTIVE CONTROL OF A FLEXIBLE ARM;284
7.45.1;I- INTRODUCTION;284
7.45.2;II- DESCRIPTION OP THE EXPERIMENTAL FLEXIBLEARM;284
7.45.3;Ill- PROCESS MODELLING;284
7.45.4;IV- IDENTIFICATION;285
7.45.5;V- CONTROL;285
7.45.6;VI- CONCLUSIONS;286
7.45.7;VII- REFERENCEES;286
7.46;Chapter 46. ADAPTIVE CONTROL OF A FLEXIBLESTRUCTURE;290
7.46.1;INTRODUCTION;290
7.46.2;THE FOUR-DISK SYSTEM;290
7.46.3;DISTURBANCES;291
7.46.4;IDENTIFICATION GOALS/ASSUMPTIONS;291
7.46.5;MEASUREMENT NOISE ANDLEAST-SQUARES IDENTIFICATION;292
7.46.6;MODIFIED FILTERED LEAST-SQUARES (MFLS);292
7.46.7;FREQUENCY-CONSTRAINT PREFILTERING;293
7.46.8;ASSUMED-DAMPING IDENTIFICATIONFOR ADAPTIVE SERVOS (ADIDAS);293
7.46.9;ADAPTIVE CONTROL GOALS;294
7.46.10;RADIAL POLE-PROJECTION (RPP);294
7.46.11;BUMPLESS CONTROL STRUCTURE;294
7.46.12;PERFORMANCE COMPARISON:ADAPTIVE VERSUS ROBUST;295
7.46.13;CONCLUSION;295
7.46.14;REFERENCES;295
7.47;Chapter 47. AN APPLICATION OF ADAPTIVEFEEDFORWARD CONTROL TO ROBOTICS;296
7.47.1;1 Introduction;296
7.47.2;2 The Trajectory Learning Algorithm;296
7.47.3;3 An Implementation Of The Algorithm;298
7.47.4;4 Convergence;298
7.47.5;5 Conclusions;300
7.47.6;Acknowledgments;301
7.47.7;References;301
7.48;Chapter 48. MULTIVARIABLE SELF-TUNING FORROBOTIC SERVO APPLICATIONS;302
7.48.1;1. INTRODUCTION;302
7.48.2;2. DESIGN PHILOSOPHY;302
7.48.3;3. IMPLEMENTATION ISSUES;304
7.48.4;4. APPLICATION;305
7.48.5;5. CONCLUSION;306
7.48.6;6. ACKNOWLEDGMENTS;306
7.48.7;7. REFERENCES;306
7.49;Chapter 49. CHANGE DETECTION AND DIAGNOSIS FORVIBRATION MONITORING;310
7.49.1;INTRODUCTION;310
7.49.2;GLOBAL CHANGE DETECTION;310
7.49.3;APPLICATION TO THE VIBRATIONMONITORING PROBLEM;312
7.49.4;THE DIAGNOSIS PROBLEM;312
7.49.5;EXPERIMENTAL RESULTS;313
7.49.6;CONCLUSION;314
7.49.7;REFERENCES;314
7.50;Chapter 50. NON-GAUSSIAN SMOOTHNESS PRIORAPPROACH TO IRREGULAR TIME SERIESANALYSIS;316
7.50.1;1. INTRODUCTION;316
7.50.2;2. NON GAUSSIAN MODEL AND SMOOTHING;316
7.50.3;3. NUMERICAL ALGORITHMS;317
7.50.4;4. MODEL IDENTIFICATION;318
7.50.5;5. NUMERICAL EXAMPLES AND DISCUSSIONS;318
7.50.6;6. CONCLUDING REMARKS;321
7.50.7;REFERENCES;321
7.51;Chapter 51. DETECTION OF SENSOR FAULTS BY MEANSOF MULTIVARIATE CALCULATIONMETHODS;322
7.51.1;I. INTRODUCTION;322
7.51.2;II.GENERAL VECTOR AUTOREGRESSIVE MODEL;323
7.51.3;III.REDUNDANT AUTOREGRESSIVE MODEL;325
7.51.4;CONCLUSION;326
7.51.5;REFERENCES;327
7.52;Chapter 52. STOCHASTIC STABILITY AND THE ERGODICTHEORY OF MARKOV PROCESSES WITHAPPLICATIONS TO ADAPTIVE CONTROL;328
7.52.1;I INTRODUCTION;328
7.52.2;II THE ERGODIC THEORY OF MARKOV PROCESSES;329
7.52.3;Ill AN EXAMPLE;330
7.52.4;IV CONCLUSION;332
7.52.5;REFERENCES;332
7.53;Chapter 53. SEQUENTIAL DETECTION OF CHANGES INSTOCHASTIC SYSTEMS;334
7.53.1;PROBLEM STATEMENT;334
7.53.2;CSA MODIMCATIOHS;335
7.53.3;STATISTICAL PROPERTIES OF THE MODIFIED CSA;336
7.53.4;THE PARAMETERS TUNING OF THE MODIFIED CSA;338
7.53.5;APPLICATION OF THE MODIFIED CSA TO SOME TYPICAL MODELS OF STOCHASTIC SIGNALS;338
7.53.6;REFERENCES;339
7.54;Chapter 54. A STOCHASTIC GRADIENT ALGORITHM FORMULTICHANNEL ACTIVE SOUND CONTROL;342
7.54.1;INTRODUCTION;342
7.54.2;A SINGLE CHANNEL ALGORITHM;343
7.54.3;A MULTICHANNEL ALGORITHM;344
7.54.4;CONCLUSIONS;346
7.54.5;ACKNOWLEDGEMENTS;347
7.54.6;REFERENCES;346
7.55;Chapter 55. ESTIMATION — CORRELATION, MODELINGAND IDENTIFICATION IN ADAPTIVE ARRAYPROCESSORS;348
7.55.1;INTRODUCTION;348
7.55.2;THE KNOWN COVARIANCE CASE;348
7.55.3;MATRIX REPRESENTATION OF BOUNDEDLINEAR OPERATORS;349
7.55.4;EXAMPLES OF REPRESENTATION OFDETERMINISTIC OPERATORS;350
7.55.5;MODELING AND IDENTIFYING OFSTOCHASTIC OPERATORS;350
7.55.6;AN EXAMPLE - PERIODIC SIGNALS;352
7.55.7;APPLICATION OF SINGULAR VALUEDECOMPOSITION;352
7.55.8;CONCLUSIONS;353
7.55.9;ACKNOWLEDGEMENTS;353
7.55.10;REFERENCES;353
7.56;Chapter 56. SIGN-SIGN ADAPTIVE IDENTIFIERS:CONVERGENCE AND ROBUSTNESSPROPERTIES;354
7.56.1;1. INTRODUCTION;354
7.56.2;2. PRELIMINARY OBSERVATIONS;354
7.56.3;3. CONVERGENCE FOR SMALL STEP SIZE;355
7.56.4;4. STABILITY USING ALTENATIVE LYAPUNOV FUNCTIONS;356
7.56.5;5. CONCLUSIONS;357
7.56.6;6. APPENDIX;357
7.56.7;REFERENCES;359
7.57;Chapter 57. PERSISTENCY OF EXCITATION IN POSSIBLYUNSTABLE CONTINUOUS TIME SYSTEMSAND PARAMETER CONVERGENCE INADAPTIVE IDENTIFICATION;360
7.57.1;INTRODUCTION;360
7.57.2;NOTATION;361
7.57.3;PRELIMINARY DEFINITIONS ANDPROPOSITIONS;361
7.57.4;OUTPUT REACHABILITY ANDPERSISTENCY OF EXCITATION;362
7.57.5;STATE SPACE REALIZATIONS AND PERSISTENCY OF EXCITATION;363
7.57.6;APPLICATION TO ADAPTIVE IDENTIFICATION;364
7.57.7;CONCLUSION;365
7.57.8;ACKNOWLEDGEMENTS;365
7.57.9;REFERENCES;365
7.58;Chapter 58. OPTIMAL ADAPTIVE CONTROL WITHCONSISTENT PARAMETER ESTIMATES*;366
7.58.1;INTRODUCTION;366
7.58.2;STRONG CONSISTENCY OF LSA AND SGA;367
7.58.3;ADAPTIVE LQ CONTROL WITHCONSISTENT ESTIMATION;368
7.58.4;ADAPTIVE TRACKING WITHCONSISTENT ESTIMATION;369
7.58.5;CONCLUSION;369
7.58.6;REFERENCES;370
7.59;Chapter 59. SYNCHRONOUS DATA FLOW PROGRAMMINGWITH THE LANGUAGE SIGNAL;372
7.59.1;1. INTRODUCTION.;372
7.59.2;2. CONSTRUCTION OF THE STATIC NETWORKS;373
7.59.3;3. THE TEMPORAL GENERATORS. AND THE CORRESPONDINGINSTRUCTION SET OF SIGNAL·;374
7.59.4;4. THE DEPENDENCE GRAPH OF A SIGNAL PROGRAM;375
7.59.5;5. CONCLUSION;376
7.59.6;REFERENCES;377
7.60;Chapter 60. AN ADAPTIVE MICROPHONE ARRAY IMPLEMENTED ON THE SIGNAL PROCESSOR TMS 32010;378
7.60.1;INTRODUCTION;378
7.60.2;THE REQUIREMENTS OF THE SYSTEM;378
7.60.3;THE ADAPTIVE DIRECTIONAL SYSTEM;378
7.60.4;CALIBRATIONS;379
7.60.5;MEASUREMENTS;379
7.60.6;CONCLUSIONS;380
7.60.7;REFERENCES;380
7.61;Chapter 61. ALTERNATE STRUCTURES FOR ADAPTIVETIME SERIES MODELLING;382
7.61.1;I. INTRODUCTION;382
7.61.2;II. ADAPTIVE ALGORITHMS;383
7.61.3;III. STRUCTURAL TRADE-OFFS;384
7.61.4;IV. PARALLEL STRUCTURE;384
7.61.5;V. CONCLUSION;385
7.61.6;REFERENCES;385
7.62;Chapter 62. ON ESTIMATING THE ORDER OF AN ARMAPROCESS;388
7.62.1;INTRODUCTION;388
7.62.2;PROBLEM STATEMENT;388
7.62.3;MATRIX PERTURBATION RESULTS;389
7.62.4;STATISTICAL ANALYSIS;389
7.62.5;A CLASS OF TESTS;390
7.62.6;SIMULATION RESULTS;391
7.62.7;CONCLUDING REMARKS;391
7.62.8;REFERENCES;391
7.62.9;APPENDIX: A MATRIX PERTURBATION RESULT;392
7.63;Chapter 63. OPTIMAL DIRECT ADAPTIVE CONTROLSYSTEMS WITH DELAYS;394
7.63.1;1. Introduction.;394
7.63.2;2·Problem Statement.;394
7.63.3;3·Optimal System Structure Design.;394
7.63.4;4.Optimal Predictor Model.;395
7.63.5;5.Adaptive Algorithms.;395
7.63.6;6. Optimal Adaptive Algorithms.;395
7.63.7;7. Conclusion.;396
7.63.8;References;396
7.64;Chapter 64. ADAPTIVE DEAD-TIME ESTIMATION;398
7.64.1;INTRODUCATION;398
7.64.2;PREVIOUS METHODS FOR DEAD-TIME ESTIMATION;398
7.64.3;NEW METHOD FOR DEAD-TIME ESTIMATION;399
7.64.4;EXAMPLES;399
7.64.5;CONCLUSIONS;401
7.64.6;REFERENCES;402
7.65;Chapter 65. AUTO TUNING OF THE TIME HORIZON;404
7.65.1;INTRODUCTION;404
7.65.2;EHC USING PARALLEL COMPENSATION;404
7.65.3;LEAST SQUARES PARAMETER ESTIMATION;405
7.65.4;THE AUTOTUNING ALGORITHM;406
7.65.5;SIMULATION RESULTS;407
7.65.6;SUMMARY;408
7.65.7;REFERENCES;408
7.66;Chapter 66. IMPROVEMENTS OF THE SERVOBEHAVIOUR OF THE MUSMAR SELF-TUNING CONTROLLER;410
7.66.1;INTRODUCTION;410
7.66.2;1. THE ORIGINAL MUSMAR ALGORITHM;410
7.66.3;2. THEORETICAL ANALYSIS OF THE SERVOBEHAVIOUR OF MUSMAR;411
7.66.4;3. SIMULATION RESULTS WITH MUSMAR;411
7.66.5;4. THE MODIFIED MUSMAR ALGORITHM;412
7.66.6;5. SIMULATION RESULTS WITH THE MODIFIEDMUSMAR ALGORITHM;414
7.66.7;6. COMPARISON AND CONCLUSIONS;415
7.66.8;REFERENCES;415
7.67;Chapter 67. REDUCED VARIANCE POLE-ASSIGNMENTSERVO SELF-TUNING;416
7.67.1;1. INTRODUCTION;416
7.67.2;2. A POLE-ASSIGNMENT SERVO CONTROLLER;416
7.67.3;3. REDUCED OUTPUT VARIANCE;417
7.67.4;4. MAGNITUDE OF VARIANCE REDUCTION;417
7.67.5;5. ON-LINE COST REDUCTION;418
7.67.6;6. EXTENDED SELF-TUNING CONTROL;418
7.67.7;7. A SIMULATED EXAMPLE;419
7.67.8;8. CONCLUSIONS;419
7.67.9;ACKNOWLEDGMENTS;419
7.67.10;REFERENCES;419
7.67.11;APPENDIX;420
7.68;Chapter 68. ADAPTIVE CONTROL OF LINEAR TIMEVARYINGPLANTS*;426
7.68.1;1. INTRODUCTION;426
7.68.2;2. MATHEMATICAL PRELIMINARIES;427
7.68.3;3. MODEL FOLLOWING FOR TIME-VARYINGPLANTS;427
7.68.4;4. MRAC FOR TIME-VARYING PLANTS;429
7.68.5;5. CONCLUSIONS;430
7.68.6;6. REFERENCES;430
7.68.7;APPENDIX;430
7.69;Chapter 69. NONLINEAR DYNAMICS IN ADAPTIVECONTROL: CHAOTIC AND PERIODICSTABILIZATION;432
7.69.1;1. INTRODUCTION;432
7.69.2;2. THE ADAPTIVE SCHEME;432
7.69.3;3. THE DYNAMICS OF THE CLOSED LOOP;433
7.69.4;4. THE DYNAMICS OF THE CLOSED LOOP II;434
7.69.5;5. THE DYNAMICS OF THE CLOSED LOOP III;;434
7.69.6;6. STABILITY OF THE ADAPTIVE LOOP;435
7.69.7;7. COMPLEMENTS AND CONCLUSIONS;436
7.69.8;REFERENCES;436
7.70;Chapter 70. EXPLICIT ADAPTIVE CONTROL WITHOUTPERSISTINGLY EXCITING INPUTS;438
7.70.1;1. INTRODUCTION;438
7.70.2;2. ADMISSIBLE DOMAINS IN THEPARAMETER SPACE;438
7.70.3;3. A THEOREM OF ROBUST'STABILITY FOR SLOWLY TIME VARYING SYSTEMS;439
7.70.4;4. ROBUST INDIRECT ADAPTIVE CONTROL UNDER ADMISSIBILITY HYPOTHESES;440
7.70.5;5. SOLVING THE STABILIZABILITY PROBLEM;441
7.70.6;6. CONCLUSIONS;442
7.70.7;REFERENCES;442
7.71;Chapter 71. DIRECT ADAPTIVE CONTROL OF SYSTEMSWITH BOUNDED DISTURBANCES;444
7.71.1;INTRODUCTION;444
7.71.2;II PROJECTION ALGORITHM WITH DEAD ZONE.;444
7.71.3;Ill STABILITY ANALYSIS;446
7.71.4;REFERENCES;447
7.72;Chapter 72. ENTROPY MEASURES FOR OPTIMAL ANDADAPTIVE CONTROL;448
7.72.1;INTRODUCTION;448
7.72.2;ENTROPY FORMULATION OF CONTROL PROBLEMS;449
7.72.3;EXAMPLE;450
7.72.4;CONCLUSIONS;451
7.72.5;REFERENCES;451
7.73;Chapter 73. STABILITY OF AN ADAPTIVE ARMAPREDICTOR PRESENCE OF NARROW-BANDINPUT SIGNALS;454
7.73.1;I. STABILITY OF ARMA PREDICTION;454
7.73.2;II. THEORETICAL ANALYSIS OF SELF-STABILIZATION;455
7.73.3;III. APPLICATION TO DIGITAL SPEECH CODING;457
7.73.4;IV. CONCLUSION;458
7.74;AUTHOR INDEX;460


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.