Buch, Englisch, 285 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 620 g
ISBN: 978-3-031-36680-2
Verlag: Springer Nature Switzerland
Clinical Applications of Artificial Intelligence in Real-World Data is a critical resource for anyone interested in the use and application of data science within medicine, whether that be researchers in medical data science or clinicians looking for insight into the use of these techniques.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Betriebliches Gesundheitsmanagement
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
Weitere Infos & Material
Part 1: Data Processing, Storage, Regulations.- Biomedical Big Data: Opportunities and Challenges.- Quality Control, Data Cleaning, Imputation.- Data Security And Privacy Issues.- Data Standards and Terminology.- Biomedical Ontologies.- Graph Databases as Future Of Data Storage.- Data Integration, Harmonization.- Natural Language Processing And Text Mining- Turning Unstructured Data Into Structured.- Part 2: Analytics.- Statistical Analysis Statistical Analysis - Causality, Mendelian Randomization.- Statistical Analysis – Meta-Analysis/Reproducibility.- Machine Learning – Basic Concepts.- Machine Learning – Basic Supervised Methods.- Machine Learning – Basic Unsupervised Methods.- Machine Learning – Evaluation.- Machine Learning – Representation Learning/Feature Selection/Engineering.- Machine Learning – Interpretation.- Deep Learning – Prediction.- Deep Learning – Autoencoders.- Artificial Intelligence.- Machine Learning In Practice – Clinical Decision Support, Risk Prediction, Diagnosis.- Machine Learning In Practice – Evaluation Clinical Value, Guidelines.- Challenges Of Machine Learning and AI.