E-Book, Englisch, 722 Seiten
Asaka / Okuzaki Soft Actuators
2. Auflage 2019
ISBN: 978-981-13-6850-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Materials, Modeling, Applications, and Future Perspectives
E-Book, Englisch, 722 Seiten
ISBN: 978-981-13-6850-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators. Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators.
Kinji Asaka received his Ph.D. degree in Science from Kyoto University in 1990. He is currently a Group Leader of Hybrid Actuator Group, Inorganic Functional Material Research Institute at AIST. His current research interests include interfacial electrochemistry and polymer actuators. He is a member of the Society of Polymer Science, Japan and the Society of Instrument and Control Engineers. Hidenori Okuzaki received his Ph.D. degree in Science from Hokkaido University in 1994. Since 1994, he has been working on organic electronics using conductive polymers as an assistant professor of the Faculty of Engineering, University of Yamanashi. He has been an associate professor in 2003 and he has dealt with conducting micro- and nano-fibers, and organic field-effect transistors. Since 2014, he has been a professor of the Graduate Faculty of Interdisciplinary Research, University of Yamanashi and he has been focusing on the synthesis of highly conductive polymers and applications to soft sensors and actuators for organic robotics.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Part I: Introduction;11
3.1;Chapter 1: Progress and Current Status of Materials and Properties of Soft Actuators;12
3.1.1;1.1 Introduction;12
3.1.2;1.2 Gel Actuators;14
3.1.2.1;1.2.1 pH-Responsive Gels;14
3.1.2.2;1.2.2 Salt-Responsive Gels;14
3.1.2.3;1.2.3 Solvent-Responsive Gels;14
3.1.2.4;1.2.4 Thermo-Responsive Gels;15
3.1.2.5;1.2.5 Electro-Responsive Gels;15
3.1.2.6;1.2.6 Photo-Responsive Gels;18
3.1.2.7;1.2.7 Magneto-Responsive Gels;19
3.1.3;1.3 Conductive Polymer Actuators;19
3.1.3.1;1.3.1 Electro-Responsive Conductive Polymers;19
3.1.3.2;1.3.2 Humidity-Responsive Conductive Polymers;21
3.1.4;1.4 Elastomer Actuators;21
3.1.4.1;1.4.1 Electro-Responsive Elastomers;21
3.1.4.2;1.4.2 Photo-Responsive Elastomers;22
3.1.5;1.5 Carbon Nanotube Actuators;22
3.1.6;1.6 Bio-Actuators;23
3.1.7;References;23
3.2;Chapter 2: Current Status of Applications and Markets of Soft Actuators;28
3.2.1;2.1 Introduction;28
3.2.2;2.2 Current Status of Applications of Soft Actuators;29
3.2.2.1;2.2.1 Groundbreaking Studies;29
3.2.2.2;2.2.2 Current Status of Technology of EAP Actuators for Applications;30
3.2.2.3;2.2.3 Consumer Electronics;30
3.2.2.4;2.2.4 Biomedical Devices;34
3.2.2.5;2.2.5 Robotics;34
3.2.2.6;2.2.6 Other Applications of Soft Actuators;37
3.2.2.7;2.2.7 Energy Harvesting and Sensor;37
3.2.3;2.3 Current and Expected Markets for Soft Actuators;39
3.2.4;2.4 Conclusion;42
3.2.5;References;44
4;Part II: Materials of Soft Actuators: Thermo-Driven Soft Actuators;45
4.1;Chapter 3: Electromagnetic Heating;46
4.1.1;3.1 Introduction;46
4.1.2;3.2 Surface Modification of CMCs;48
4.1.3;3.3 Preparation of Composite Gels;49
4.1.4;3.4 Sensitivity of Composite Gels Against Electromagnetic Wave;51
4.1.5;3.5 Conclusions;53
4.1.6;References;54
4.2;Chapter 4: Thermo-Responsive Nanofiber Mats Fabricated by Electrospinning;55
4.2.1;4.1 Introduction;55
4.2.2;4.2 Experimental;56
4.2.3;4.3 Results and Discussion;58
4.2.3.1;4.3.1 Synthesis and Characterization of PNIPA and PNIPA-SAX;58
4.2.3.2;4.3.2 Electrospinning and Morphology of PNIPA and PNIPA-SAX;59
4.2.3.3;4.3.3 Thermo-Response of Nanofiber Mats;61
4.2.4;4.4 Conclusions;65
4.2.5;References;65
4.3;Chapter 5: Evolution of Self-Oscillating Polymer Gels as Autonomous Soft Actuators;67
4.3.1;5.1 Introduction;67
4.3.2;5.2 Design of Self-Oscillating Polymer Gel;68
4.3.3;5.3 Development of Self-Oscillating Polymer Gels as Functional Soft Materials;69
4.3.4;5.4 Toward Artificial Cilia: Preparation of Self-Oscillating Polymer Brushes;70
4.3.5;5.5 Toward Autonomous Soft Machines as Polymer Solution Systems;72
4.3.5.1;5.5.1 Transmittance and Viscosity Oscillation of Polymer Solution and Microgel Dispersion;72
4.3.5.2;5.5.2 Self-Oscillating Block Copolymers;74
4.3.5.3;5.5.3 Self-Oscillating Vesicles;75
4.3.5.4;5.5.4 Cross-Linked Polymersomes Showing Self-Beating Motion;76
4.3.5.5;5.5.5 Self-Oscillating Colloidosomes;78
4.3.5.6;5.5.6 Viscosity Oscillations of Self-Oscillating Multiblock Copolymers;80
4.3.5.7;5.5.7 Amoeba-Like Self-Oscillating Polymeric Fluids with Autonomous Sol-Gel Transition;81
4.3.6;References;84
4.4;Chapter 6: Polyrotaxane Actuators;87
4.4.1;6.1 Introduction;88
4.4.2;6.2 Rotaxane and Polyrotaxane;89
4.4.2.1;6.2.1 Chemical and Structural Diversity of Polyrotaxanes;92
4.4.2.1.1;6.2.1.1 Diversity of the Cyclic Component;92
4.4.2.1.2;6.2.1.2 Diversity of the Polymer Backbone;93
4.4.2.1.3;6.2.1.3 Diversity of the Host-Guest Ratio;94
4.4.3;6.3 Synthesis of Polyrotaxanes;94
4.4.3.1;6.3.1 Polyrotaxane Synthesis by Template-Directed Clipping;95
4.4.3.2;6.3.2 One-Pot Multicomponent Synthesis of Polyrotaxanes;98
4.4.3.3;6.3.3 Templated Synthesis of Polyrotaxane;100
4.4.3.4;6.3.4 Synthesis of Poly[3]rotaxanes by Huisgen 1,3-Dipolarcycloaddition Reactions;101
4.4.3.5;6.3.5 Synthesis of Polyrotaxanes by [2 + 3] Nitrile N-Oxide/Acetylene Cycloaddition Reactions;102
4.4.3.6;6.3.6 Synthesis of Graft Polypseudorotaxanes and Graft Polyrotaxanes;102
4.4.3.7;6.3.7 Polypseudorotaxane and Polyrotaxane-Based Polymer Brushes;103
4.4.3.8;6.3.8 Pseudorotaxane-Assisted Formation of a Two-Dimensional (2D) Polymer;103
4.4.3.9;6.3.9 TEMPO-Mediated Oxidation: An Alternative Synthesis of Polyrotaxane;104
4.4.3.10;6.3.10 Solvent-Free Synthesis of Polyrotaxane by Grinding;104
4.4.3.11;6.3.11 Liquid Crystalline Polyrotaxane;104
4.4.3.12;6.3.12 Poly(polyrotaxane);105
4.4.4;6.4 Polyrotaxanes for Molecular Machines;105
4.4.4.1;6.4.1 Types of Molecular Machines;106
4.4.4.2;6.4.2 Types of External Stimuli for Molecular Machines;107
4.4.4.3;6.4.3 Responses of Molecular Machines;109
4.4.4.4;6.4.4 Molecular Shuttle;109
4.4.4.4.1;6.4.4.1 Molecular Necklace;110
4.4.4.4.2;6.4.4.2 Light-Driven Molecular Shuttle;110
4.4.4.4.3;6.4.4.3 Multimode-Driven Molecular Shuttle;110
4.4.4.4.4;6.4.4.4 Electronically Driven Molecular Shuttle;111
4.4.4.5;6.4.5 Molecular Actuator;111
4.4.4.5.1;6.4.5.1 Molecular Muscles;112
4.4.4.5.2;6.4.5.2 Daisy Chain;113
4.4.4.5.3;6.4.5.3 Molecular Elevator;115
4.4.4.6;6.4.6 Molecular Switch;115
4.4.4.7;6.4.7 Piston-Cylinder;116
4.4.4.8;6.4.8 Reversible Molecular Valve;117
4.4.4.9;6.4.9 Molecular Motor;118
4.4.4.10;6.4.10 Molecular Pump;119
4.4.4.11;6.4.11 Molecular Ratchet;120
4.4.5;6.5 Polyrotaxanes for Soft Materials;121
4.4.5.1;6.5.1 Topological or Slide-Ring Gel;121
4.4.5.2;6.5.2 Liquid Crystalline Polyrotaxanes;123
4.4.5.3;6.5.3 Sliding Graft Copolymer;124
4.4.5.4;6.5.4 Slide-Ring Material/Natural Rubber Composites;125
4.4.5.5;6.5.5 Molecular Tubes and Insulated Molecular Wires;125
4.4.5.6;6.5.6 Photoresponsive Slide-Ring Gel;127
4.4.5.7;6.5.7 Chromic Slide-Ring;128
4.4.5.8;6.5.8 Fast Thermosensitive Hydrogels Prepared by Polyrotaxane as a Cross-Linker;128
4.4.5.9;6.5.9 Extremely Stretchable Thermosensitive Hydrogels Prepared by a Polyrotaxane Cross-Linker;130
4.4.5.10;6.5.10 Polyrotaxane-Based Resins;130
4.4.5.11;6.5.11 Polyrotaxane Fibers and Polyrotaxane/Cellulose Blend Fibers;132
4.4.5.12;6.5.12 Polyrotaxane-Based Nanocomposite Gels;133
4.4.5.13;6.5.13 Polyrotaxane-Based Materials for Biomedical Applications;133
4.4.6;6.6 Future Prospects of Polyrotaxanes as Actuators;139
4.4.7;References;141
5;Part III: Materials of Soft Actuators: Electro-Driven Soft Actuators;154
5.1;Chapter 7: Ionic Conductive Polymers;155
5.1.1;7.1 Introduction;155
5.1.2;7.2 Ionic Conductive Polymer Actuators;156
5.1.2.1;7.2.1 Overview;156
5.1.2.2;7.2.2 Ionic Conductive Polymers;157
5.1.2.3;7.2.3 Fabrication Methods of Electrodes for Ionic Conductive Polymer Actuators;158
5.1.2.4;7.2.4 Evaluation Methods of Driving Characteristics of Ionic Conductive Polymer Actuators;159
5.1.3;7.3 Recent Progress of IPMC Technologies;160
5.1.3.1;7.3.1 Multi-material IPMC with SMP and PTC Heater;160
5.1.3.2;7.3.2 Multi-material IPMC Printed by 3D Printers;161
5.1.3.3;7.3.3 Medical Welfare Applications with Ionic Conductive Polymer Actuators;163
5.1.4;7.4 Conclusion;168
5.1.5;References;169
5.2;Chapter 8: Conducting Polymers;174
5.2.1;8.1 Introduction;174
5.2.2;8.2 Mechanism of Actuation;175
5.2.2.1;8.2.1 Electrochemomechanical Actuation;175
5.2.2.2;8.2.2 Water Vapor Sorption Based Actuation;178
5.2.3;8.3 Measurement of Actuation;178
5.2.4;8.4 Characteristics and Performance;179
5.2.4.1;8.4.1 Basic Characteristics in Conducting Polymer Actuators;179
5.2.4.2;8.4.2 Polypyrrole Actuator;181
5.2.4.3;8.4.3 Polyaniline Actuator;183
5.2.4.4;8.4.4 Polyalkylthiphene and PEDOT Actuators;183
5.2.4.5;8.4.5 Ionic Liquids;183
5.2.5;8.5 Creep and Related Phenomena;185
5.2.6;8.6 Conclusion;186
5.2.7;References;186
5.3;Chapter 9: Humidity-Sensitive Conducting Polymer Actuators;189
5.3.1;9.1 Introduction;189
5.3.2;9.2 Experimental;190
5.3.3;9.3 Results and Discussion;191
5.3.3.1;9.3.1 Specific Surface Area;191
5.3.3.2;9.3.2 Water Vapor Sorption;192
5.3.3.3;9.3.3 Contraction Under Electric Field;194
5.3.3.4;9.3.4 Stress Generation and Modulus Change;197
5.3.3.5;9.3.5 Work Capacity and Energy Efficiency;199
5.3.3.6;9.3.6 Applications to Linear Actuators;199
5.3.4;9.4 Conclusions;202
5.3.5;References;202
5.4;Chapter 10: Carbon Nanotube/Ionic Liquid Composites;205
5.4.1;10.1 Introduction;205
5.4.2;10.2 Fabrication of Bucky Gel Actuator and the Actuation Mechanism;206
5.4.3;10.3 Measurements;207
5.4.4;10.4 Influence of ILs;208
5.4.5;10.5 Nano-Carbon Materials;211
5.4.6;10.6 Improving the Actuation Properties by Using Additives;212
5.4.7;10.7 Application;215
5.4.8;10.8 Conclusions;216
5.4.9;References;216
5.5;Chapter 11: Ion Gels for Ionic Polymer Actuators;218
5.5.1;11.1 Introduction;218
5.5.2;11.2 Materials for Ionic Polymer Actuators Using Ionic Liquids;220
5.5.3;11.3 Polymer Actuator Prepared by Self-Assembly of an ABA-Triblock Copolymer;221
5.5.4;11.4 Ionic Polymer Actuator Based on a Multi-Block Copolymer and Its Driving Mechanism;223
5.5.5;11.5 Sulfonated Polyimide for a High-Performance Ionic Polymer Actuator;227
5.5.6;References;230
5.6;Chapter 12: Ionic Liquid/Polyurethane/PEDOT:PSS Composite Actuators;234
5.6.1;12.1 Introduction;234
5.6.2;12.2 Experimental;235
5.6.3;12.3 Results and Discussion;236
5.6.3.1;12.3.1 Mechanical Properties of IL/PU Gels;236
5.6.3.2;12.3.2 Electrical Properties of IL/PU Gels;237
5.6.3.3;12.3.3 EAP Actuating Behavior of IL/PU/PEDOT:PSS Composites;238
5.6.4;12.4 Conclusions;243
5.6.5;References;244
5.7;Chapter 13: Dielectric Gels;245
5.7.1;13.1 General Background;246
5.7.2;13.2 Electroactive Dielectric Actuators;247
5.7.2.1;13.2.1 Gels Swollen with Dielectric Solvent;247
5.7.2.1.1;13.2.1.1 Behavior of Dielectric Solvent Under dc Electric Field;247
5.7.2.1.2;13.2.1.2 Highly Swollen Chemically Crosslinked Dielectric Gel;248
5.7.2.2;13.2.2 Possibility of Elastomers as Electroactive Dielectric Actuator;249
5.7.2.3;13.2.3 Plasticized Polymer (PVC Gel);250
5.7.2.4;13.2.4 Solid Crystalline Polymer Film;252
5.7.3;13.3 Electro-Optical Functions;253
5.7.4;13.4 Mechano-Electric Functions;254
5.7.5;13.5 Concluding Remarks;255
5.7.6;References;256
5.8;Chapter 14: Dielectric Elastomers;259
5.8.1;14.1 Introduction;259
5.8.2;14.2 Background on DE Artificial Muscles;260
5.8.3;14.3 Principle of Operation of DEs;262
5.8.4;14.4 Materials, Fabrication, Performance, and Operating Considerations of DE Actuators;264
5.8.5;14.5 Unique Feature of DE Actuators;266
5.8.6;14.6 Principle of DE Generators;268
5.8.7;14.7 Innovative DE Generators;270
5.8.8;14.8 Toward the Future;271
5.8.8.1;14.8.1 Super Artificial Muscle;271
5.8.8.2;14.8.2 Carbon Management;272
5.8.9;References;272
5.9;Chapter 15: Piezoelectric Polymers;274
5.9.1;15.1 Introduction;274
5.9.2;15.2 Macroscopic Piezoelectricity of Polymers;275
5.9.3;15.3 Actuation of PLLA Film;277
5.9.3.1;15.3.1 PLLA Film Roll Transducer;277
5.9.3.2;15.3.2 PLLA Multilayer Film;278
5.9.3.2.1;15.3.2.1 Piezoelectric Performance of PDLA/PLLA Multilayer Film;282
5.9.3.2.2;15.3.2.2 Performance of Soft Actuator Fabricated by PDLA/PLLA Multilayer Film;283
5.9.4;15.4 Summary;284
5.9.5;References;286
5.10;Chapter 16: Thermal and Electrical Actuation of Liquid Crystal Elastomers/Gels;287
5.10.1;16.1 Introduction;287
5.10.2;16.2 Fabrication of Nematic Elastomers with Various Types of Director Configuration;289
5.10.3;16.3 Thermal Actuation;290
5.10.3.1;16.3.1 Thermal Elongation/Contraction of NEs with Planar or Vertical Director Configuration;290
5.10.3.2;16.3.2 Thermal Bending of NEs with Hybrid Director Configuration;292
5.10.3.3;16.3.3 Thermal Deformation of NEs with Twist Director Configuration;294
5.10.3.4;16.3.4 Thermally Induced Periodical Surface Undulation of Cholesteric Elastomers;296
5.10.4;16.4 Electrical Actuation;298
5.10.4.1;16.4.1 Electrical Actuation of NEs with Polydomain Director Alignment;298
5.10.4.2;16.4.2 Electrical Actuation of Cholesteric Gel Films;299
5.10.5;16.5 Summary;302
5.10.6;References;303
6;Part IV: Materials of Soft Actuators: Light-Driven Soft Actuators;305
6.1;Chapter 17: Spiropyran-Functionalized Hydrogels;306
6.1.1;17.1 Introduction;306
6.1.2;17.2 Past Researches on Photoresponsive Hydrogels;307
6.1.3;17.3 Spiropyran-Functionalized Hydrogel Actuators;307
6.1.3.1;17.3.1 Mechanism and Characteristics;307
6.1.3.2;17.3.2 Bending of Rod Actuator;310
6.1.3.3;17.3.3 Surface Profile Modulation of Sheet Actuator;311
6.1.3.4;17.3.4 On-Demand Formation of Arbitrary Microchannel;312
6.1.3.5;17.3.5 Individual Control of Microvalve Array;313
6.1.4;17.4 Conclusions and Future Outlook;315
6.1.5;References;315
6.2;Chapter 18: Photomechanical Energy Conversion with Cross-Linked Liquid-Crystalline Polymers;318
6.2.1;18.1 Introduction;318
6.2.2;18.2 Light-Driven Polymer Actuators;320
6.2.2.1;18.2.1 Photochromism;320
6.2.2.2;18.2.2 Photochemical Reaction;321
6.2.2.3;18.2.3 Photothermal Effect;322
6.2.3;18.3 Photomechanical Property of Cross-Linked Liquid-Crystalline Polymers;322
6.2.3.1;18.3.1 Fabrication of Cross-Linked LC Polymers;322
6.2.3.2;18.3.2 Photoinduced Deformation of LC Polymers;323
6.2.3.3;18.3.3 Light-Driven Polymer Actuators Based on Cross-Linked LC Polymers;325
6.2.4;18.4 Conclusion;327
6.2.5;References;328
6.3;Chapter 19: Photoredox Reaction;331
6.3.1;19.1 Introduction;331
6.3.2;19.2 Electrochemical Swelling and Shrinking of the Gel;332
6.3.3;19.3 UV-Induced Swelling of the Gel and Shrinking in the Dark;333
6.3.4;19.4 Partial Changes of the Gel Morphology;335
6.3.5;19.5 Application of the Plasmonic Photoelectrochemistry to Actuators;336
6.3.6;19.6 UV-Induced Swelling and Visible Light-Induced Shrinking of the Gel;337
6.3.7;19.7 Conclusions;338
6.3.8;References;339
7;Part V: Materials of Soft Actuators: Magneto-Driven Soft Actuators;340
7.1;Chapter 20: Magnetic Fluid Composite Gels;341
7.1.1;20.1 Introduction;341
7.1.2;20.2 Magnetic Fluid;342
7.1.2.1;20.2.1 Various Hydrodynamic Characteristics and Behavior;342
7.1.2.2;20.2.2 Deformation of Magnetic Fluid by Magnetic Field;343
7.1.2.2.1;20.2.2.1 Conical Meniscus;343
7.1.2.2.2;20.2.2.2 Swelling of the Interface by the Magnetic Field;343
7.1.2.2.3;20.2.2.3 Magnetic Levitation;344
7.1.2.2.4;20.2.2.4 Application of Magnetic Fluid;344
7.1.3;20.3 Magnetic Fluid Composite Gels;344
7.1.3.1;20.3.1 Magnetostriction of Magnetic Fluid Immobilized Gel;345
7.1.3.1.1;20.3.1.1 Immobilization Magnetic Fluid in the Gels;345
7.1.3.1.2;20.3.1.2 Morphology of the Magnetic Fluid Gels;345
7.1.3.1.3;20.3.1.3 Magneto-Striction of Magnetic Fluid Immobilized Gel;346
7.1.3.2;20.3.2 Structural Change of Magnetic Fluid Gels Induced by Magnetic Field;347
7.1.4;20.4 The Applications of Magnetic Fluid Composite Gels;351
7.1.4.1;20.4.1 Magnetite Immobilization in the Gel by Complexation Reaction;351
7.1.4.2;20.4.2 Release Control by Magnetic Field;352
7.1.4.3;20.4.3 Encapsulation of Magnetic Fluid for Display Device;354
7.1.5;20.5 Conclusion;355
7.1.6;References;356
7.2;Chapter 21: Magnetic Particle Composite Gels;357
7.2.1;21.1 Introduction;357
7.2.2;21.2 Magnetically Driven Actuators Made of Soft Materials;359
7.2.2.1;21.2.1 Magnetic Gel Pumps;359
7.2.2.2;21.2.2 Rotational Motion of Magnetic Gel Beads;360
7.2.2.3;21.2.3 Magnetic Gel Valves;360
7.2.3;21.3 Magnetic Soft Materials with Variable Viscoelasticity;361
7.2.4;21.4 Conclusion;368
7.2.5;References;369
8;Part VI: Modeling;371
8.1;Chapter 22: Molecular Mechanism of Electrically Induced Volume Change of Porous Electrodes;372
8.1.1;22.1 Introduction;372
8.1.2;22.2 Model;373
8.1.3;22.3 The Monte Carlo Simulation;374
8.1.4;22.4 Thermodynamic Behaviors of Ions in Porous Electrodes;375
8.1.4.1;22.4.1 Effects of Porosity;375
8.1.4.2;22.4.2 Some Simulation Results and Their Implications;376
8.1.4.3;22.4.3 Comparison with Experimentally Proposed Theories;379
8.1.5;22.5 Conclusions;380
8.1.6;References;381
8.2;Chapter 23: Computational Modeling of Mechanical Sensors Using Ionic Electroactive Polymers;382
8.2.1;23.1 Modeling of Ionic Electroactive Polymers;383
8.2.2;23.2 Black Box Model of Mechanical Sensors Using Conducting Polymers;385
8.2.3;23.3 Numerical Simulation of Mechanical Sensors Using Conducting Polymers;388
8.2.4;23.4 Numerical Simulation of Mechanical Sensors Using Hydrated IPMCs;389
8.2.5;23.5 Conclusions;392
8.2.6;References;393
8.3;Chapter 24: Distributed Parameter System Modeling;395
8.3.1;24.1 Introduction;396
8.3.2;24.2 Physics of Ionic Polymer-Metal Composite;397
8.3.2.1;24.2.1 Electrical Model;397
8.3.2.2;24.2.2 Electro-Mechanical Coupling Model: Electro-Stress Diffusion Coupling Model (Yamaue´s Model);397
8.3.2.3;24.2.3 Mechanical Model;398
8.3.3;24.3 The Simplest Approximation: Linear Time Invariant State Space Equation;399
8.3.3.1;24.3.1 General Description of State Space Model and Method of Numerical Simulation;399
8.3.3.2;24.3.2 Approximation of Partial Differential Equations: Separation of Variables and Derivation of the State Space Model;399
8.3.3.2.1;24.3.2.1 Electrical System;399
8.3.3.2.2;24.3.2.2 Electro-Mechanical Coupling System;400
8.3.3.2.3;24.3.2.3 Mechanical System;402
8.3.3.2.4;24.3.2.4 Interconnection of Sub-Systems;403
8.3.3.3;24.3.3 Simulation;404
8.3.4;24.4 Conclusion;406
8.3.5;References;406
8.4;Chapter 25: Control of Electro-active Polymer Actuators with Considering Characteristics Changes;408
8.4.1;25.1 Introduction;408
8.4.2;25.2 Control of Ionic Polymer-Metal Composite Actuator;409
8.4.3;25.3 Self-Tuning Control;410
8.4.3.1;25.3.1 Controller Design;411
8.4.3.2;25.3.2 Parameters Updating Based on the Recursive Estimation;412
8.4.3.3;25.3.3 Results;413
8.4.4;25.4 Cellular Actuator Control;415
8.4.4.1;25.4.1 Control Law;416
8.4.4.2;25.4.2 Results;417
8.4.5;References;418
8.5;Chapter 26: Motion Design-A Gel Robot Approach;419
8.5.1;26.1 Gel Robot Approach;419
8.5.2;26.2 Agent Model of Electroactive Polymers;420
8.5.3;26.3 Control System Design based on the Agent Model;421
8.5.4;26.4 Turning Over Motion Design;421
8.5.4.1;26.4.1 Simulation of Deformation of the Electroactive Polymer Gel in Applied Electric Field;421
8.5.4.1.1;26.4.1.1 Migration of Surfactant Molecules Driven by the Electric Field;422
8.5.4.1.2;26.4.1.2 Adsorption of Surfactant Molecules to the Polymers;422
8.5.4.1.3;26.4.1.3 Gel Deformation Caused by Adsorption of Surfactant Molecules;423
8.5.4.1.4;26.4.1.4 Summary;423
8.5.4.2;26.4.2 Definition of Utility Function for Achieving Turning Over Motion;424
8.5.4.2.1;26.4.2.1 Abstraction of the Objective Motion;424
8.5.4.2.2;26.4.2.2 Spatially Varying Electric Field to Move the Center of the Gel;425
8.5.4.2.3;26.4.2.3 Selection of a Set of Operators;425
8.5.4.2.4;26.4.2.4 Phase Diagram for Switching of Operators;426
8.5.4.3;26.4.3 Application of Condition Action Rules;427
8.5.5;26.5 Discussion;429
8.5.6;References;430
8.6;Chapter 27: Motion Control;431
8.6.1;27.1 Introduction;431
8.6.2;27.2 Contraction Type PVC Gel Actuator;432
8.6.2.1;27.2.1 Configuration of a Contraction Type Actuator;432
8.6.2.2;27.2.2 Characteristics of the PVC Gel Actuator;433
8.6.3;27.3 Modeling and Motion Control;436
8.6.3.1;27.3.1 Modeling of the PVC Gel Actuator;436
8.6.3.1.1;27.3.1.1 Modeling by the Electric Impedance Measurement;436
8.6.3.2;27.3.2 Relationship Between the Current and Contraction Stress;438
8.6.3.3;27.3.3 Relationship Between the Contraction Stress and Strain;439
8.6.3.3.1;27.3.3.1 Modeling the Whole System of the PVC Gel Actuator;439
8.6.3.4;27.3.4 Control of the PVC Gel Actuator;440
8.6.3.4.1;27.3.4.1 Control Law;440
8.6.3.4.2;27.3.4.2 Determination of Gains;441
8.6.3.4.3;27.3.4.3 Feedback Control;441
8.6.4;27.4 Conclusions;443
8.6.5;References;443
8.7;Chapter 28: IPMC Actuation Mechanisms and Multi-physical Modeling;445
8.7.1;28.1 Introduction;446
8.7.2;28.2 Actuation Mechanisms;447
8.7.2.1;28.2.1 Nafion- and Flemion-IPMC;447
8.7.2.2;28.2.2 Deformation Properties;448
8.7.2.2.1;28.2.2.1 Nafion-IPMC;448
8.7.2.2.2;28.2.2.2 Flemion-IPMC;448
8.7.2.3;28.2.3 Water Phases and Relaxation Deformation;449
8.7.2.4;28.2.4 Current Response and Steady-State Deformation;452
8.7.2.4.1;28.2.4.1 Nafion-IPMC;452
8.7.2.4.2;28.2.4.2 Flemion-IPMC;453
8.7.2.5;28.2.5 Actuation Mechanisms Summary;454
8.7.2.5.1;28.2.5.1 Mechanism of Fast Anode Deformation;454
8.7.2.5.2;28.2.5.2 Mechanism of Relaxation Deformation;454
8.7.2.5.3;28.2.5.3 Mechanism of Slow Anode Deformation;455
8.7.3;28.3 Multi-physical Modeling Equations of IPMC;455
8.7.3.1;28.3.1 Electrical Field;455
8.7.3.2;28.3.2 Electrical Transport in IPMC;456
8.7.3.3;28.3.3 Chemo-mechanical Deformation in IPMC;458
8.7.3.3.1;28.3.3.1 Stress Field;458
8.7.3.3.1.1;Stress in Porous Composite;459
8.7.3.3.1.1.1;Force on the Solid/Liquid Surface;459
8.7.3.3.1.1.2;Pressure in the Liquid;460
8.7.3.3.1.1.3;Elastic Stress in the Solid;460
8.7.3.3.1.2;Stress in Sandwich Structure;461
8.7.3.3.2;28.3.3.2 Eigen Stresses;462
8.7.3.3.2.1;Osmotic Pressure;462
8.7.3.3.2.2;Electrostatic Stress;463
8.7.3.3.3;28.3.3.3 Strain Field;464
8.7.4;28.4 Various Effects on Electrical Transport;465
8.7.4.1;28.4.1 Inter-coupling Effect;466
8.7.4.2;28.4.2 Pressure Effect;467
8.7.4.3;28.4.3 Hydration Effect;469
8.7.5;28.5 Eigen Stresses and Deformation;472
8.7.5.1;28.5.1 Contribution of Each Eigen Stress to Deformation;473
8.7.5.2;28.5.2 Evolvement of Deformation with Initial Water Content;477
8.7.5.2.1;28.5.2.1 Osmotic Pressure;477
8.7.5.2.2;28.5.2.2 Electrostatic Stress;477
8.7.5.2.3;28.5.2.3 Relaxation Due to Eigen Stress Evolvement;478
8.7.5.2.4;28.5.2.4 Relaxation Due to Overcharging;479
8.7.5.2.5;28.5.2.5 Dielectric Constant Effect;480
8.7.6;28.6 Simplification of IPMC Multi-physical Model;480
8.7.6.1;28.6.1 Strict;480
8.7.6.2;28.6.2 Weak;481
8.7.6.3;28.6.3 Simplification on Transport Equations;481
8.7.6.4;28.6.4 Simplification for Eigen Stresses;482
8.7.6.4.1;28.6.4.1 Equivalent Eigen Stress;482
8.7.6.4.2;28.6.4.2 Linearization of Stresses;483
8.7.6.5;28.6.5 Experimental Verification;484
8.7.6.5.1;28.6.5.1 Deformation Variation with Water Content;484
8.7.6.5.1.1;Deformation Test of the First Phase;485
8.7.6.5.1.2;Deformation Test of the Second Phase;485
8.7.6.5.2;28.6.5.2 Deformation Fitting;485
8.7.7;28.7 Future Development on Physical Modeling;489
8.7.7.1;28.7.1 Electrical Double Layer and Transport Process;489
8.7.7.2;28.7.2 Chemical Reaction and Transport Process;490
8.7.7.3;28.7.3 Chemical Eigen Stresses;490
8.7.7.4;28.7.4 Method of Numerical Analysis;490
8.7.8;References;491
8.8;Chapter 29: Sensing Properties and Physical Model of Ionic Polymer;493
8.8.1;29.1 Introduction;493
8.8.2;29.2 IPMC Sensing Properties with Ambient Humidity;495
8.8.2.1;29.2.1 Material and Measurement Preparation;496
8.8.2.2;29.2.2 Voltage Response When Varying Water Content;497
8.8.3;29.3 Voltage Response of IPMC Sensor with Various Cations;501
8.8.3.1;29.3.1 Static Voltage Response;502
8.8.3.1.1;29.3.1.1 Voltage Rising Process;502
8.8.3.1.2;29.3.1.2 Negative Steady-State Voltage;502
8.8.3.1.3;29.3.1.3 Disappearance of Voltage Decay;504
8.8.3.1.3.1;Initial Fast Voltage Increase;504
8.8.3.1.3.2;Slow Voltage Decay;507
8.8.3.2;29.3.2 Dynamic Voltage Response;509
8.8.3.2.1;29.3.2.1 High Ambient Humidity;509
8.8.3.2.2;29.3.2.2 Moderate Ambient Humidity;510
8.8.3.2.3;29.3.2.3 Low Ambient Humidity;511
8.8.4;29.4 Current Response of IPMC Sensor with Various Cations;512
8.8.4.1;29.4.1 Static Current Response;512
8.8.4.1.1;29.4.1.1 Current Peak;512
8.8.4.1.2;29.4.1.2 Current Decay;512
8.8.4.1.3;29.4.1.3 Free Oscillation Decay;514
8.8.4.2;29.4.2 Dynamic Current Response;516
8.8.5;29.5 IPMC Sensing Physical Model;517
8.8.5.1;29.5.1 Multi-physical Model Equations;518
8.8.5.1.1;29.5.1.1 Mechanical Field;518
8.8.5.1.1.1;Stress Field in Polymer;518
8.8.5.1.1.2;Pressure in Ion Cluster;519
8.8.5.1.2;29.5.1.2 Transport Process in Chemical Field;519
8.8.5.1.2.1;Convection Under Pressure;519
8.8.5.1.2.2;Electrical Migration of Built-In Field;520
8.8.5.1.2.3;Inter-coupling Effect Between Water and Cation;520
8.8.5.1.3;29.5.1.3 Electrical Field;521
8.8.5.2;29.5.2 Numerical Analysis on Transport Process;521
8.8.5.2.1;29.5.2.1 Water Transport Under Pressure;522
8.8.5.2.2;29.5.2.2 Electrical Migration by Built-In Field;523
8.8.5.2.3;29.5.2.3 Inter-coupling Effect;525
8.8.5.3;29.5.3 Electrical Response of IPMC Sensor;528
8.8.6;29.6 Future Development on Extended Ionic Polymer Sensor;530
8.8.7;References;532
8.9;Chapter 30: Modeling of Dielectric Elastomer Actuator;536
8.9.1;30.1 Introduction;536
8.9.2;30.2 DEA Free Energy Model;538
8.9.2.1;30.2.1 The Thermodynamic System;538
8.9.2.2;30.2.2 Nonlinear Mechanics;541
8.9.3;30.3 Electromechanical Instability in DEA;543
8.9.3.1;30.3.1 Mechanism of Instability;543
8.9.3.2;30.3.2 Suppressing the Snap-Through Instability;544
8.9.4;30.4 Harnessing the Instability for New DEA Performance;546
8.9.4.1;30.4.1 Harnessing the Snap-Through;546
8.9.4.2;30.4.2 Harnessing the Crater Instability;546
8.9.5;30.5 Conclusion;547
8.9.6;References;548
8.10;Chapter 31: Modeling of Dielectric Gel Using Multi-physics Coupling Theory;550
8.10.1;31.1 Introduction;550
8.10.2;31.2 Dielectric Gel: Actuation Mechanism and Characteristics;551
8.10.2.1;31.2.1 Actuation of Dielectric Gel;551
8.10.2.2;31.2.2 Deformation Character of Dielectric Gel;553
8.10.3;31.3 A Free Energy Model for the Dielectric Gel;554
8.10.4;31.4 Cases of Dielectric Gel Actuation;557
8.10.4.1;31.4.1 Phase Transition;557
8.10.4.2;31.4.2 Constrained Expansion;559
8.10.4.3;31.4.3 Gel Piston;560
8.10.4.4;31.4.4 Contractile Actuation;564
8.10.5;31.5 Applications of Dielectric Gel;566
8.10.5.1;31.5.1 An Amoeba Robot;566
8.10.5.2;31.5.2 An Artificial Lens;566
8.10.5.3;31.5.3 Soft Exoskeleton;566
8.10.6;31.6 Conclusion;567
8.10.7;References;568
8.11;Chapter 32: Modeling and Control of Fishing-Line/Sewing-Thread Artificial Muscles (Twisted and Coiled Polymer Fibers, TCPFs);570
8.11.1;32.1 Introduction;571
8.11.2;32.2 Physics, Material, and Types of Fishing-Line/Sewing-Thread Artificial Muscle Actuators;571
8.11.2.1;32.2.1 Physics and Material of Fishing-Line Artificial Muscles;571
8.11.2.2;32.2.2 Types of Fishing-Line/Sewing-Thread Artificial Muscle Actuators;572
8.11.3;32.3 Fabrication of Coiled Type Actuators and Electrothermal Actuation by Joule Heating;573
8.11.3.1;32.3.1 Fabrication of Twisted and Coiled Polymer Fiber (TCPF) Actuators;573
8.11.3.2;32.3.2 Joule Heating by Nichrome Wire;574
8.11.4;32.4 Modeling;575
8.11.4.1;32.4.1 Linear Dynamical Model for TCPFs;575
8.11.4.2;32.4.2 System Identification;576
8.11.5;32.5 Position Control Based on Model-Based Design;578
8.11.5.1;32.5.1 PID Feedback and Input Linearization;578
8.11.5.2;32.5.2 Performance Improvement by Feedforward Controller;579
8.11.5.3;32.5.3 Experiment of Position Control;579
8.11.5.4;32.5.4 Cooling Control Using a Controllable Fan;580
8.11.5.5;32.5.5 Experiment of Cooling Control;582
8.11.6;32.6 Conclusions;583
8.11.7;References;584
9;Part VII: Applications;586
9.1;Chapter 33: Underwater Soft Robots;587
9.1.1;33.1 Introduction;588
9.1.2;33.2 Autonomous Ray-Like Robot;589
9.1.2.1;33.2.1 Development of the Ray-Like Robot;589
9.1.2.1.1;33.2.1.1 Design of the Fin Using IPMC;589
9.1.2.1.2;33.2.1.2 Electrical Devices for Autonomous Operation;590
9.1.2.2;33.2.2 Design of the Control Input;590
9.1.2.2.1;33.2.2.1 Traveling Wave of the Fin;590
9.1.2.2.2;33.2.2.2 Design of the Voltage Input to the Actuators;591
9.1.2.3;33.2.3 Experiments;591
9.1.2.3.1;33.2.3.1 Measurement of the Propulsion Speed;592
9.1.2.3.2;33.2.3.2 Measurement of the Amplitude of the Traveling Wave;592
9.1.2.3.3;33.2.3.3 Discussions;593
9.1.3;33.3 Quadruped Robot with Fully Polymer Body;594
9.1.3.1;33.3.1 Development of the Quadruped Robot;594
9.1.3.2;33.3.2 Design of the Control Input;596
9.1.3.2.1;33.3.2.1 Design of the Walking Pattern, Gait;596
9.1.3.2.2;33.3.2.2 Feedforward Controller for Smoothing the Voltage Input;597
9.1.3.3;33.3.3 Experiment;597
9.1.3.3.1;33.3.3.1 Method;597
9.1.3.3.2;33.3.3.2 Results and Discussions;598
9.1.4;33.4 Conclusion;599
9.1.5;References;600
9.2;Chapter 34: IPMC Actuator-Based Multifunctional Underwater Microrobots;602
9.2.1;34.1 Introduction;603
9.2.2;34.2 Biomimetic Locomotion;605
9.2.2.1;34.2.1 IPMC Actuators;605
9.2.2.2;34.2.2 Bio-Inspired Locomotion;606
9.2.2.2.1;34.2.2.1 Stick Insect-Inspired Walking Locomotion;606
9.2.2.2.2;34.2.2.2 Jellyfish-Like Floating Locomotion;607
9.2.2.2.3;34.2.2.3 Butterfly-Inspired Swimming Locomotion;607
9.2.2.2.4;34.2.2.4 Inchworm-Inspired Crawling Locomotion;608
9.2.3;34.3 Developed Microrobots;608
9.2.4;34.4 Proposed Multifunctional Lobster-Like Microrobot;611
9.2.4.1;34.4.1 Actual Lobsters;611
9.2.4.2;34.4.2 Proposed Lobster-Like Microrobot;611
9.2.4.3;34.4.3 Crawling and Rotating Mechanism;612
9.2.4.4;34.4.4 Floating Mechanism;613
9.2.4.5;34.4.5 Grasping Mechanism;613
9.2.4.6;34.4.6 Control System;613
9.2.5;34.5 Prototype Microrobot and Experiments;613
9.2.5.1;34.5.1 Prototype of the Lobster-Like Microrobot;613
9.2.5.2;34.5.2 Walking Experiments;614
9.2.5.3;34.5.3 Rotating Experiments;615
9.2.5.4;34.5.4 Floating Experiments;615
9.2.5.5;34.5.5 Walking, Rotating and Hand Manipulation Experiments;616
9.2.5.6;34.5.6 Obstacle-Avoidance Experiments;616
9.2.6;34.6 Discussion;618
9.2.7;34.7 Conclusion;619
9.2.8;References;620
9.3;Chapter 35: Medical Applications;623
9.3.1;35.1 Surgical Applications;623
9.3.2;35.2 Catheter Applications;624
9.3.3;35.3 Transport Systems;624
9.3.4;35.4 Active Scaffolds for Regenerative Medicine;625
9.3.5;35.5 Artificial Voice Synthesis;626
9.3.6;35.6 Drug Delivery System;628
9.3.7;References;628
9.4;Chapter 36: Elastomer Transducers;630
9.4.1;36.1 Introduction;630
9.4.2;36.2 Background on DE Transducers;631
9.4.3;36.3 DE Actuators and DE Sensors;632
9.4.3.1;36.3.1 Application of Robots (Includes Care and Rehabilitation Purposes) and Sensors;632
9.4.3.2;36.3.2 Application to Audio Equipment;633
9.4.3.3;36.3.3 Other Applications;635
9.4.4;36.4 Application of DE Generation Devices;636
9.4.4.1;36.4.1 DE Wave Generation;637
9.4.4.2;36.4.2 Solar Heat Generator Using DE;639
9.4.4.3;36.4.3 DE Water Mill Generators;640
9.4.4.4;36.4.4 Portable DE Generators;641
9.4.4.5;36.4.5 Wearable Generators;641
9.4.4.6;36.4.6 Production of Hydrogen;642
9.4.4.7;36.4.7 Sites Where Power Generation Using DEs Is Possible;643
9.4.5;36.5 Future of DE;643
9.4.6;References;644
9.5;Chapter 37: Dielectric Elastomer Sensors: Development of a Stretchable Strain Sensor System;646
9.5.1;37.1 Introduction;646
9.5.2;37.2 Features of the Stretch Sensor;647
9.5.2.1;37.2.1 Measurement Principle and Basic Characteristics;647
9.5.2.2;37.2.2 Features of the Stretch Sensor;649
9.5.3;37.3 Application Example of a Stretch Sensor;651
9.5.3.1;37.3.1 Measurement of Articulation Motion (Motion Sensing);651
9.5.3.2;37.3.2 Interface;653
9.5.3.3;37.3.3 Wearable Switch;654
9.5.3.4;37.3.4 Respiratory Rate Assessment Tool;655
9.5.3.5;37.3.5 Swallowing Function Evaluation Tool;658
9.5.4;37.4 Conclusion;659
9.5.5;References;660
10;Part VIII: Next-Generation Bio-actuators;661
10.1;Chapter 38: Tissue-Engineering Approach to Making Soft Actuators;662
10.1.1;38.1 Introduction;662
10.1.2;38.2 Tissue Engineering and Regenerative Medicine;663
10.1.3;38.3 Muscle Tissue as an Actuator;664
10.1.4;38.4 Tissue-Engineered Skeletal Muscle;666
10.1.5;38.5 Our Tissue-Engineered Skeletal Muscle;666
10.1.6;38.6 Contractile Property and Gene Expression of Tissue-Engineered Muscle;668
10.1.7;38.7 Tissue-Engineered Muscle for Bioactuators;669
10.1.8;38.8 Further Study and Conclusion;671
10.1.9;References;672
10.2;Chapter 39: Integration of Soft Actuators Based on a Biomolecular Motor System to Develop Artificial Machines;674
10.2.1;39.1 Introduction;675
10.2.2;39.2 Microtubule-Kinesin, an ATP-Driven Biomolecular Actuator;675
10.2.3;39.3 Active Self-Organization of a Biomolecular Motor System with Controlled Morphologies and Motions;676
10.2.4;39.4 Control of Self-Organization of Biomolecular Motors Exhibiting Collective Motion;679
10.2.5;39.5 Mechanical Oscillation Emerging from Self-Organization of Biomolecular Motors;680
10.2.6;39.6 Biomimetic Devices Based on a Self-Organized Biomolecular Motor System;681
10.2.6.1;39.6.1 Construction of Artificial Cilia by Integration of Biomolecular Motors;681
10.2.6.2;39.6.2 Controlling Spatial Organization of Biomolecular Motors in Cell-Like Biomimetic Constraints;682
10.2.7;39.7 Biomolecular Motor System as a Sensor of Surface Mechanical Deformation;685
10.2.8;39.8 Molecular Swarm Robots Based on the Biomolecular Actuators;687
10.2.9;39.9 Future Outlook;688
10.2.10;References;689
10.3;Chapter 40: Employing Cytoskeletal Treadmilling in Bio-actuators;693
10.3.1;40.1 Introduction;693
10.3.2;40.2 What Is Treadmilling?;695
10.3.3;40.3 Studies of Treadmilling Systems;697
10.3.4;40.4 Supra-Macromolecular Hierarchical Cytoskeletal Protein Hydrogels;698
10.3.5;40.5 Further Attractive Aspects and Remaining Tasks of Treadmilling Proteins;701
10.3.6;40.6 Conclusions;702
10.3.7;References;702
10.4;Chapter 41: Construction and Functional Emergence of Bioactuated Micronanosystem and Living Machined Wet Robotics;705
10.4.1;41.1 Introduction;705
10.4.2;41.2 Bioactuator Using Muscle Cells;707
10.4.3;41.3 Bioactuator with Superior Environmental Resistance;708
10.4.4;41.4 Bioactuator Created by the Three-Dimensional Tissue Architecture of Muscle Cells and Its Application;709
10.4.4.1;41.4.1 Myocardial Gel Actuator;710
10.4.4.2;41.4.2 Motion Control of Muscle Tissue by Cultured Neural Network;711
10.4.5;41.5 Light Control of Muscle Cell Bioactuator;713
10.4.6;41.6 Study of the High Performance of the Bioactuator and Evaluation Methods;715
10.4.6.1;41.6.1 Mechanical Stimulation of Bioactuators;715
10.4.6.2;41.6.2 Evaluation of Mechanical Properties of Bioactuators;716
10.4.6.3;41.6.3 Evaluation of Thermal Properties of Cells;718
10.4.7;41.7 Conclusion and Future Prospects;719
10.4.8;References;720




