Asahi / Horikoshi | Molecular Beam Epitaxy | Buch | 978-1-119-35501-4 | www2.sack.de

Buch, Englisch, 512 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 1134 g

Asahi / Horikoshi

Molecular Beam Epitaxy

Materials and Applications for Electronics and Optoelectronics
1. Auflage 2019
ISBN: 978-1-119-35501-4
Verlag: Wiley

Materials and Applications for Electronics and Optoelectronics

Buch, Englisch, 512 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 1134 g

ISBN: 978-1-119-35501-4
Verlag: Wiley


Covers both the fundamentals and the state-of-the-art technology used for MBE

Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications.

Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more.
- Includes chapters on the fundamentals of MBE
- Covers new challenging researches in MBE and new technologies

- Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners
- Part of the Materials for Electronic and Optoelectronic Applications series

Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.

Asahi / Horikoshi Molecular Beam Epitaxy jetzt bestellen!

Weitere Infos & Material


List of Contributors xv

Series Preface xix

Preface xxi

Part I Fundamentals of MBE 1

1. History of MBE 3
Tom Foxon

1.1 Introduction 3

1.2 The MBE Process 4

1.3 Controlled n and p Doping 10

1.4 Modified Growth Procedures 10

1.5 Gas-Source MBE 11

1.6 Low-Dimensional Structures 11

1.7 III–V Nitrides, Phosphides, Antimonides and Bismides and Other Materials 13

1.8 Early MBE-Grown Devices 18

1.9 Summary 18

Acknowledgments 18

References 19

2. General Description of MBE 23
Yoshiji Horikoshi

2.1 Introduction 23

2.2 High-Vacuum Chamber System 24

2.3 Atomic and Molecular Beam Sources 25

2.4 Measurement of MBE Growth Parameters 28

2.5 Surface Characterization Tools for MBE Growth 31

2.6 Summary 37

Acknowledgments 37

References 38

3. Migration-Enhanced Epitaxy and its Application 41
Yoshiji Horikoshi

3.1 Introduction 41

3.2 Toward Atomically Flat Surfaces in MBE 42

3.3 Principle of MEE 44

3.4 Growth of GaAs by MEE 48

3.5 Incommensurate Deposition and Migration of Ga Atoms 49

3.6 Application of MEE Deposition Sequence to Surface Research 50

3.7 Application of MEE to Selective Area Epitaxy 51

3.8 Summary 54

Acknowledgments 54

References 55

4. Nanostructure Formation Process of MBE 57
Koichi Yamaguchi

4.1 Introduction 57

4.2 Growth of Quantum Wells 58

4.3 Growth of Quantum Wires and Nanowires 60

4.4 Growth of Quantum Dots 64

4.5 Conclusion 71

References 72

5. Ammonia Molecular Beam Epitaxy of III-Nitrides 73
Micha N. Fireman and James S. Speck

5.1 Introduction 73

5.2 III-Nitride Fundamentals 74

5.3 Ammonia Molecular Beam Epitaxy 77

5.4 Ternary Nitride Alloys and Doping 82

5.5 Conclusions 86

References 86

Contents vii

6. Mechanism of Selective Area Growth by MBE 91
Katsumi Kishino

6.1 Background 91

6.2 Growth Parameters for Ti Mask SAG 92

6.3 Initial Growth of Nanocolumns 94

6.4 Nitrogen Flow Rate Dependence of SAG 95

6.5 Diffusion Length of Ga Adatoms 96

6.6 Fine Control of Nanocolumn Arrays by SAG 98

6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size 100

6.8 Nanotemplate SAG of AlGaN Nanocolumns 101

6.9 Conclusions and Outlook 103

References 104

Part II MBE Technology for Electronic Devices Application 107

7. MBE of III-Nitride Semiconductors for Electronic Devices 109
Rolf J. Aidam, O. Ambacher, E. Diwo, B.-J. Godejohann, L. Kirste, T. Lim, R. Quay, and P. Waltereit

7.1 Introduction 109

7.2 MBE Growth Techniques 110

7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate 118

7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate 123

7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications 125

7.6 Vertical Devices 130

References 132

8. Molecular Beam Epitaxy for Steep Switching Tunnel FETs 135
Salim El Kazzi

8.1 Introduction 135

8.2 TFET Working Principle 136

8.3 III–V Heterostructure for TFETs 136

8.4 MBE for Beyond CMOS Technologies 138

8.5 Doping 139

8.6 Tunneling Interface Engineering 142

8.7 MBE for III–V TFET Integration 143

8.8 Conclusions and Perspectives 146

Acknowledgments 146

References 147

Part III MBE for Optoelectronic Devices 149

9. Applications of III–V Semiconductor Quantum Dots in Optoelectronic Devices 151
Kouichi Akahane and Yoshiaki Nakata

9.1 Introduction: Self-assembled Quantum Dots 151

9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates 152

9.3 InAs QD Optical Device Operating at Telecom Band (1.55 µm)


Series Editors

Arthur Willoughby University of Southampton, Southampton, UK

Peter Capper formerly of SELEX Galileo Infrared Ltd, Southampton, UK

Safa Kasap University of Saskatchewan, Saskatoon, Canada

Edited by Hajime Asahi Emeritus Professor, Osaka University, Japan

Yoshiji Horikoshi Emeritus Professor, Waseda University, Tokyo, Japan



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.