Arzen | Computer Software Structures Integrating AI/KBS Systems in Process Control | E-Book | sack.de
E-Book

E-Book, Englisch, 232 Seiten, Web PDF

Reihe: IFAC Postprint Volume

Arzen Computer Software Structures Integrating AI/KBS Systems in Process Control


1. Auflage 2014
ISBN: 978-1-4832-9761-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 232 Seiten, Web PDF

Reihe: IFAC Postprint Volume

ISBN: 978-1-4832-9761-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The past few years have seen rapid developments in computer technology, giving rise to a range of system control options which can be applied in the process industries. These include; open systems, expert systems, neural networks, fuzzy systems and object-oriented systems, all of which are covered in this key volume, which provides an invaluable summary of the latest international research in this area.

Arzen Computer Software Structures Integrating AI/KBS Systems in Process Control jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Computer Software Structures Integrating AI/Kbs Systems in Process Control;2
3;Copyright Page;3
4;Table of Contents;6
5;Chapter 1. Towards Integrated Process Supervision: Current Status and Future Directions;10
5.1;1 . INTRODUCTION;10
5.2;2 . PROBLEM SOLVING PARADIGMS IN PROCESS SUPERVISION;11
5.3;3. INTEGRATED PROCESS SUPERVISION: CHALLENGES AND THE ROLE OF AI;12
5.4;4. CURRENT STATUS OF AUTOMATION IN PROCESS SUPERVISION: A BRIEF REVIEW;14
5.5;5. BRINGING IT ALL TOGETHER: FUTURE DIRECTIONS IN INTEGRATED PROCESS SUPERVISION;18
5.6;6 . CONCLUSIONS;21
5.7;7 . REFERENCES;21
6;Chapter 2. Software Integration of Real-Time Expert Systems;24
6.1;1. Introduction;24
6.2;2. Objectives;24
6.3;3. Approach;25
6.4;4. Implementation;27
6.5;5. Related Work;28
6.6;6. Summary and Future Directions;29
6.7;7. References;29
7;Chapter 3. DATA FLOW ARCHITECTURE FOR ADVANCED PROCESS CONTROL;30
7.1;1. INTRODUCTION;30
7.2;2. DATAFLOW;30
7.3;3. INTEGRATION;31
7.4;4. CONTROL SYSTEM;32
7.5;5. DATA FLOW GRAPHS;33
7.6;6. SUMMARY;34
7.7;7. DEFICIENCIES;34
7.8;8. PROTOTYPE;34
7.9;9. APPLICATION;35
7.10;10. CONCLUSIONS;35
7.11;REFERENCES;35
7.12;ACKNOWLEDGEMENTS;35
8;Chapter 4. CONTROLLER VERIFICATION USING QUALITATIVE REASONING;36
8.1;INTRODUCTION;36
8.2;CSTR PROCESS;37
8.3;RESULTS;37
8.4;CONCLUSIONS;38
8.5;REFERENCES;39
9;Chapter 5. TIME-DEPENDENT SYSTEM KNOWLEDGE REPRESENTATION BASED ON DYNAMIC MPLD;42
9.1;1. INTRODUCTION;42
9.2;2. TIME-DEPENDENT BEHAVIOR OF PHYSICAL SYSTEMS;43
9.3;3. DYNAMIC MPLD;44
9.4;4. EXAMPLES OF DMPLD REPRESENTATION;45
9.5;5. REFERENCE;48
10;Chapter 6. Combining Multilevel Flow Modeling and Hybrid Phenomena Theory for efficient design of engineering systems;50
10.1;1. INTRODUCTION;50
10.2;2. A KNOWLEDGE-BASED SUPPORT SYSTEM FOR FUNCTION-BASED DESIGN;51
10.3;3. MULTILEVEL FLOW MODELING AND ITS EXTENSION FOR DESIGN PROBLEMS;51
10.4;4. IMPLEMENTATION OF THE HYBRID PHENOMENA THEORY;52
10.5;5. EXAMPLE DESIGN PROBLEMS;53
10.6;6. CONCLUSIONS;54
10.7;7. ACKNOWLEDGEMENT;55
10.8;8. REFERENCES;55
11;Chapter 7. A SIMULATION ENVIRONMENT FOR EVALUATION OF KNOWLEDGE BASED FAULT DIAGNOSIS SYSTEMS;56
11.1;1. INTRODUCTION;56
11.2;2. CONCEPT OF THE SIMULATION ENVIRONMENT;57
11.3;3. THE MFM APPROACH TO FAULT DETECTION AND DIAGNOSIS;58
11.4;4. A CASE STUDY: A SIMULATED LABORATORY PLANT UNDER CONTROL;58
11.5;5. DISCUSSION AND FURTHER ENHANCEMENTS;60
11.6;6. CONCLUSIONS;61
11.7;ACKNOWLEDGEMENT;61
11.8;REFERENCES;61
12;Chapter 8. MULTI-PARADIGM REASONING FOR MOLECULAR BEAM EPITAXY CONTROL;62
12.1;1. GOALS;62
12.2;2. TECHNICAL DESCRIPTION - GENERAL APPROACH;62
12.3;3. TECHNICAL DESCRIPTION - SPECIFIC CASE;64
12.4;4. CONCLUSION;67
12.5;5. REFERENCES;67
13;Chapter 9. CANCELLATION CONTROLLER BASED ON FUZZY RELATIONAL MATRIX AND COMPARISON WITH OTHER CONTROL ALGORITHMS;68
13.1;1. INTRODUCTION;68
13.2;2. THE FUZZY RELATIONAL MATRIX MODEL;68
13.3;3. CANCELLATION CONTROLLER BASED ON FUZZY RELATIONAL MATRIX MODEL;70
13.4;4. FUZZY CANCELLATION CONTROL OF NONLINEAR PLANT;71
13.5;5. CONCLUSION;72
13.6;REFERENCES;72
14;Chapter 10. ADAPTIVE TUNING OF FUZZY LOGIC CONTROLLERS;74
14.1;1. INTRODUCTION;74
14.2;2. LINGUISTIC SIMULATION;74
14.3;3. CONTROLLER TUNING;76
14.4;4. ADAPTIVE FUZZY CONTROLLERS;78
14.5;5. CONCLUSIONS;79
14.6;6. REFERENCES;79
15;Chapter 11. STEPS TOWARDS REAL-TIME CONTROL USING KNOWLEDGE BASED SIMULATION OF FLEXIBLE MANUFACTURING SYSTEMS;80
15.1;1. INTRODUCTION;80
15.2;2. DECISION MAKING IN SIMULATION OF FMS;80
15.3;3. EXPERIMENTAL KB SIMULATION SYSTEMS FOR FMS;81
15.4;5. CONCLUSIONS;83
15.5;6. REFERENCES;83
16;Chapter 12. INTELLIGENT ACTUATION AND MEASUREMENT SYSTEM-BASED MODELLING: THE PRIAM WAY OF WORKING;84
16.1;1. INTRODUCTION;84
16.2;2.IAT CONTEXT;85
16.3;3.IAM CONTEXT;85
16.4;4. - FUNCTIONAL REQUIREMENT DIAGRAMS OF IAM;86
16.5;5. FUNCTIONAL DIAGRAMS OF IAM;87
16.6;6. CONCLUSION;88
16.7;7· ACKNOWLEDGEMENTS;88
16.8;8. ACRONYMS;88
16.9;9. REFERENCES;88
17;Chapter 13. REAL-TIME INTELLIGENT PROCESS CONTROL USING CONTINUOUS FUZZY PETRI NETS;90
17.1;1 Introduction;90
17.2;2 Fuzzy Logic Overview;90
17.3;3 Petri Net Overview;91
17.4;4 CFPN;91
17.5;5 Example;94
17.6;6 Conclusions;94
17.7;References;94
18;Chapter 14. PARAMETERIZED HIGH-LEVEL GRAFCET FOR STRUCTURING REAL-TIME KBS APPLICATIONS;98
18.1;1. INTRODUCTION;98
18.2;2. GRAFCHART;99
18.3;3. AN INDUSTRIAL EXAMPLE;100
18.4;4. HIGH-LEVEL GRAFCHART;101
18.5;5. CONCLUSIONS;102
18.6;REFERENCES;103
19;Chapter 15. Knowledge-Based Madelling of a TV -Tube Manufacturing Process;104
19.1;1 INTRODUCTION;104
19.2;2 THE SUPERVISION GOBAL ARCHITECTURE;104
19.3;3 THE PROCESS SIMULATION SYSTEM;106
19.4;4 PROCESS SIMULATION;107
19.5;5 CONCLUDING REMARKS;110
19.6;ACKNOWLEDGMENTS;110
19.7;REFERENCES;110
20;Chapter 16. A PERSPECTIVE ON THE INTEGRAED ARTIFICIAL INTELLIGENCE/KNOWLEDGE BASED SYSTEMS IN THE PROCESS INDUSTRIES: CHALLENGES AND OPPORTUNITIES;112
20.1;1 INTRODUCTION;112
20.2;2 POSITION OF ARTIFICIAL INTELLIGENCE/KNOWLEDGE BASED SYSTEMS;113
20.3;3 EXPERIENCEIN OTHER INDUSTRIES;114
20.4;4 ANALYSIS OF THE EVIDENCE;114
20.5;5 HOW COULD THE PROCESS INDUSTRIES CHANGE;115
20.6;6 CONCLUSIONS;116
20.7;REFERENCES;116
20.8;ACKNOWLEDGEMENT;116
21;Chapter 17. Improvement of Mold-Level Control using Fuzzy-Logic;118
21.1;1. Introduction;118
21.2;2. Model of the Mold-level Control Circuit;118
21.3;3. Fuzzy PI-Control of the Mold-level Circuit;120
21.4;4. Simulation results;122
21.5;5. Conclusion;123
21.6;REFERENCES;123
22;Chapter 18. RIP CONTROL IN KNOWLEDGE-BASED SYSTEMS;124
22.1;1. INTRODUCTION;124
22.2;2. RIP CONTROL;124
22.3;3. RIP DESIGN SHELL;127
22.4;4. HYBRID RULE BASE;128
22.5;5. RESULTS;129
22.6;6. CONCLUSION;129
22.7;7. REFERENCES;129
23;Chapter 19. PROCESS CONTROL USING RECURRENT NEURAL NETWORKS;130
23.1;1. INTRODUCTION;130
23.2;2. NEURAL NETWORKS ARCHITECTURES;130
23.3;3. NEURAL NETWORK BASED CONTROL ARCHITECTURES;131
23.4;4. SIMULATION STUDIES OF RECURRENT NEURAL CONTROLLERS;133
23.5;5. CONCLUSIONS;135
23.6;6. ACKNOWLEDGEMENTS;135
23.7;7. REFERENCES;135
24;Chapter 20. FUZZY ANTI-RESET WINDUP FOR HEATER CONTROL;136
24.1;1. INTRODUCTION;136
24.2;2. CONTROL PROBLEM;136
24.3;3. ANALYSIS;137
24.4;4. ANTI WINDUP SCHEME;139
24.5;5. SIMULATIONS;140
24.6;6. CONCLUSIONS;141
24.7;7. REFERENCES;141
25;Chapter 21. ACTION PLANS DYNAMIC APPLICATION IN THE ALEXIP KNOWLEDGE-BASED SYSTEM;142
25.1;1. INTRODUCTION;142
25.2;2. SITUATION GRAPHS;142
25.3;3. SELECTION OF PLANS OFACTION;146
25.4;4. CONCLUSIONS;147
25.5;5. ACKNOWLEDGMENTS;147
25.6;6. REFERENCES;147
26;Chapter 22. COMPUTERISED SUPPORT IN THE PREPARATION, IMPLEMENTATION AND MAINTENANCE OF OPERATING PROCEDURES;148
26.1;1. INTRODUCTION;148
26.2;2. PROCEDURE PREPARATION;149
26.3;3. PROCEDURE IMPLEMENTATION;150
26.4;4. DISCUSSION;151
26.5;5. CONCLUSIONS;153
26.6;REFERENCES;153
27;Chapter 23. COAST - COMPUTERISED ALARM SYSTEM TOOLBOX;154
27.1;1. INTRODUCTION;154
27.2;2. FUNCTIONALITY OF COAST;155
27.3;3. STRUCTURE AND INTERFACES;157
27.4;4. CONCLUSION;158
27.5;5. REFERENCES;159
28;Chapter 24. APPLICATION OF THE EXPERT CONTROL IN A SUGAR FACTORY;160
28.1;1. INTRODUCTION;160
28.2;2. EXPERT CONTROL;160
28.3;3. EXTRACTION CONTROL;161
28.4;4. CO-ORDINATION CONTROL;163
28.5;5. CRYSTALLISATION CONTROL IN A VACUUM PAN;164
28.6;6. PRACTICAL IMPLEMENTATION AND RESULTS;165
28.7;8. REFERENCES;165
29;Chapter 25. AREAL-TIME KNOWLEDGE-BASED BLAST FURNACE SUPERVISION SYSTEM;166
29.1;1. INTRODUCTION;166
29.2;2. THE STRUCTURE OF THE SYSTEM;167
29.3;3. THE APPLICATION;168
29.4;4. CONCLUDING REMARKS;170
29.5;5. REFERENCES;170
30;Chapter 26. REAL TIME SUPERVISION OF WASTEWATER TREATMENT PLANTS: A DISTRIBUTED AI APPROACH;172
30.1;1 INTRODUCTION;172
30.2;2. DISTRIBUTED AI AND REAL TIME PROCESS CONTROL;173
30.3;3. DESIGN OF THE DISTRIBUTED SUPERVISORY SYSTEM'S ARCHITECTURE;174
30.4;4. THE SUPERVISORY CYCLE;175
30.5;5. A CASE STUDY;176
30.6;6. CONCLUSIONS AND FUTURE WORK;176
30.7;ACKNOWLEDGEMENTS;177
30.8;REFERENCES;177
31;Chapter 27. NEURAL NETWORK MODEL FOR DISSOLVED OXYGEN CONTROL IN A BATCH FERMENTER;178
31.1;1. INTRODUCTION;178
31.2;2. NEURAL NETWORK MODEL;179
31.3;3. APPLICATION RESULTS;180
31.4;4. CONCLUSION;182
31.5;5. REFERENCES;182
32;Chapter 28. RULE BASED INTERPOLATING CONTROL FUZZY AND ITS ALTERNATIVES;184
32.1;1. INTRODUCTION;184
32.2;2. RULEBASED INTERPOLATING CONTROL;184
32.3;3. FUZZY SYSTEMS;185
32.4;4. LINEARIZATION;186
32.5;5. AND THE ALTERNATIVES;187
32.6;6. NONLINEAR MODELERS;188
32.7;7. CONCLUSIONS;189
32.8;8. REFERENCES;189
33;Chapter 29. AREAL-TIME EXPERT SYSTEM FOR PROCESS SUPERVISION AND ITS APPLICATION IN PULP INDUSTRY;190
33.1;1. BACKGROUND;190
33.2;2. WHYUSING KBS TECHNIQUES;190
33.3;3. OVERVIEW OF KE 2000;191
33.4;4. THE EXPERT SYSTEM;191
33.5;5. ARCHITECTURE OF THE PROTOTYPE;194
33.6;6. CURRENT STATUS;194
33.7;7. EFFORT;194
33.8;8. EVALUATION;195
33.9;9. ACKNOWLEDGEMENTS;195
33.10;REFERENCES;195
34;Chapter 30. Experiences from development and operation of an operator guidance system for the blast furnace process;196
34.1;1. INTRODUCTION;196
34.2;2. PROCESS CONTROL;197
34.3;3. INITIAL DECISION MODEL;197
34.4;4. MODIFIED DECISION MODEL;198
34.5;5. THE FUNCTION OF MASMESTER;199
34.6;6. RESULTS OF OPERATION;199
34.7;7. ACHIEVING ACCEPTANCE FROM THE ORGANIZATION;200
34.8;8. FURTHER R&D;201
34.9;9. CONCLUSIONS;201
34.10;10. REFERENCES;201
35;Chapter 31. Fuzzy Persistence in Process Protection;202
35.1;1. INTRODUCTION;202
35.2;2. IMPLEMENTATION OF FUZZY PERSISTENCE;204
35.3;3. CONCLUSION;205
35.4;4. ACKNOWLEDGMENT;205
36;Chapter 32. QUALITATIVE FAULT DETECTION BASED ON LOGICAL PROGRAMMING APPLIED TO A VARIABLE AIR VOLUME AIR HANDLING UNIT;208
36.1;1. INTRODUCTION;208
36.2;2. DESCRIPTION OF THE AIR-HANDLING SYSTEM;208
36.3;3. THE STEADY-STATE BEHAVIOUR OF THE SYSTEM;210
36.4;4. DESIGN OF QUALITATIVE FAULT DETECTORS OF THE CENTRAL AIR HANDLING PLANT;211
36.5;5. CONCLUSIONS AND OUTLOOK;216
36.6;6. ACKNOWLEDGEMEN;216
36.7;7. REFERENCES;216
37;Chapter 33. PROCESS DIAGNOSIS IMMUNE FROM SENSOR FAULT BY SELF-ORGANIZATION;220
37.1;1. INTRODUCTION;220
37.2;2. MUTUAL RECOGNITION NETWORK MODEL;220
37.3;3. MODIFICATIONS ON THE MUTUAL RECOGNITION MODEL;221
37.4;4. APPLICATION TO SENSOR SELF-DIAGNOSIS;222
37.5;5. PROCESS FAULT DETECTION BY HIERARCHICAL IMMUNE NETWORK;223
37.6;6. APPLICATION TO THE INDUSTRIAL PROCESS PLANT;224
37.7;7. CONCLUSIONS;225
37.8;8. REFERENCES;225
38;Chapter 34. AN INTELLIGENT ALARM HANDLING TOOL;226
38.1;1. INTRODUCTION;226
38.2;2. FIRST NAVIGATOR;226
38.3;3. KNOWLEDGE ACQUISITION;227
38.4;4. DATA-COLLECTION THROUGH EVENTS;228
38.5;5. PREDICTING CONSEQUENCES IN THE PROCESS;228
38.6;6. CONCLUSIONS;229
38.7;7. REFERENCES;230
39;AUTHOR INDEX;232



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.