Artikis / Katzouris | Inductive Logic Programming | Buch | 978-3-030-97453-4 | sack.de

Buch, Englisch, 283 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 452 g

Reihe: Lecture Notes in Artificial Intelligence

Artikis / Katzouris

Inductive Logic Programming

30th International Conference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings
1. Auflage 2022
ISBN: 978-3-030-97453-4
Verlag: Springer International Publishing

30th International Conference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings

Buch, Englisch, 283 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 452 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-030-97453-4
Verlag: Springer International Publishing


This book constitutes the refereed conference proceedings of the 30th International Conference on Inductive Logic Programming, ILP 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually.

The 16 papers and 3 short papers presented were carefully reviewed and selected from 19 submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.

Artikis / Katzouris Inductive Logic Programming jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Embedding Models for Knowledge Graphs Induced by Clusters of Relations and Background Knowledge.- Fanizzi Automatic Conjecturing of P-Recursions Using Lifted Inference.- Machine learning of microbial interactions using Abductive ILP and Hypothesis Frequency/Compression Estimation.- Answer-Set Programs for Reasoning about Counterfactual Interventions and Responsibility Scores for Classification.- Reyes Synthetic Datasets and Evaluation Tools for Inductive Neural Reasoning.- Using Domain-Knowledge to Assist Lead Discovery in Early-Stage Drug Design.- Non-Parametric Learning of Embeddings for Relational Data using Gaifman Locality Theorem.- Ontology Graph Embeddings and ILP for Financial Forecasting.- Transfer learning for boosted relational dependency networks through genetic algorithm.- Online Learning of Logic Based Neural Network Structures.- Programmatic policy extraction by iterative local search.- Mapping across relational domains for transfer learning with word embeddings-based similarity.- A First Step Towards Even More Sparse Encodings of Probability Distributions.- Feature Learning by Least Generalization.- Learning Logic Programs Using Neural Networks by Exploiting Symbolic Invariance.- Learning and revising dynamic temporal theories in the full Discrete Event Calculus.- Human-like rule learning from images using one-shot hypothesis derivation.- Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits.- A Simulated Annealing Meta-heuristic for Concept Learning in Description Logics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.