E-Book, Englisch, 162 Seiten, eBook
Reihe: Universitext
E-Book, Englisch, 162 Seiten, eBook
Reihe: Universitext
ISBN: 978-3-662-05441-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Weitere Infos & Material
1. The General Theory for One First-Order Equation.- 2. The General Theory for One First-Order Equation (Continued).- 3. Huygens’ Principle in the Theory of Wave Propagation.- 4. The Vibrating String (d’Alembert’s Method).- 5. The Fourier Method (for the Vibrating String).- 6. The Theory of Oscillations. The Variational Principle.- 7. The Theory of Oscillations. The Variational Principle (Continued).- 8. Properties of Harmonic Functions.- 9. The Fundamental Solution for the Laplacian. Potentials.- 10. The Double-Layer Potential.- 11. Spherical Functions. Maxwell’s Theorem. The Removable Singularities Theorem.- 12. Boundary-Value Problems for Laplace’s Equation. Theory of Linear Equations and Systems.- A. The Topological Content of Maxwell’s Theorem on the Multifield Representation of Spherical Functions.- A.1. The Basic Spaces and Groups.- A.2. Some Theorems of Real Algebraic Geometry.- A.3. From Algebraic Geometry to Spherical Functions.- A.4. Explicit Formulas.- A.6. The History of Maxwell’s Theorem.- Literature.- B. Problems.- B.1. Material from the Seminars.- B.2. Written Examination Problems.