Arnold / Kane / Lewis | A Computational Approach to Statistical Learning | Buch | 978-0-367-57061-3 | sack.de

Buch, Englisch, 374 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 570 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Arnold / Kane / Lewis

A Computational Approach to Statistical Learning


1. Auflage 2020
ISBN: 978-0-367-57061-3
Verlag: Chapman and Hall/CRC

Buch, Englisch, 374 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 570 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-0-367-57061-3
Verlag: Chapman and Hall/CRC


A Computational Approach to Statistical Learning gives a novel introduction to predictive modeling by focusing on the algorithmic and numeric motivations behind popular statistical methods. The text contains annotated code to over 80 original reference functions. These functions provide minimal working implementations of common statistical learning algorithms. Every chapter concludes with a fully worked out application that illustrates predictive modeling tasks using a real-world dataset.

The text begins with a detailed analysis of linear models and ordinary least squares. Subsequent chapters explore extensions such as ridge regression, generalized linear models, and additive models. The second half focuses on the use of general-purpose algorithms for convex optimization and their application to tasks in statistical learning. Models covered include the elastic net, dense neural networks, convolutional neural networks (CNNs), and spectral clustering. A unifying theme throughout the text is the use of optimization theory in the description of predictive models, with a particular focus on the singular value decomposition (SVD). Through this theme, the computational approach motivates and clarifies the relationships between various predictive models.

Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015.

Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010.

Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs.

Arnold / Kane / Lewis A Computational Approach to Statistical Learning jetzt bestellen!

Weitere Infos & Material


Matrix Methods. Direct solutions to linear systems. Iterative linear model solutions. Iteratively reweighted least squares. Blockwise techniques. Convex optimization. Quasi-Newton and gradient descent. Interior point method. Proximal algorithms. Coordinate descent. Active sets and path solutions. Other techniques. Expectation maximization. Model featurization. Neighborhood prediction. Spectral learning. Stochastic techniques.


Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015.

Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010.

Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.