ARNOLD | Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen | Buch | 978-3-0348-7126-6 | sack.de

Buch, Deutsch, 320 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 562 g

ARNOLD

Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen


Softcover Nachdruck of the original 1. Auflage 1987
ISBN: 978-3-0348-7126-6
Verlag: Birkhäuser Basel

Buch, Deutsch, 320 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 562 g

ISBN: 978-3-0348-7126-6
Verlag: Birkhäuser Basel


Untersuchung von Differentialgleichungen gehoren verschiedene asymptotische Methoden.

ARNOLD Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Spezielle Gleichungen.- 1.1. Differentialgleichungen, die bezüglich Symmetriegruppen invariant bleiben.- 1.2. Die Auflösung der Singularitäten von Differentialgleichungen.- 1.3. Implizite Differentialgleichungen.- 1.4. Die Normalform einer impliziten Differentialgleichung in der Umgebung eines regulären singulären Punktes.- 1.5. Die zeitfreie Schrödinger-Gleichung.- 1.6. Die Geometrie einer Differentialgleichung zweiter Ordnung und die Geometrie eines Paares von Richtungsfeldern im dreidimensionalen Raum.- 2. Partielle Differentialgleichungen erster Ordnung.- 2.1. Lineare und quasilineare partielle Differentialgleichungen erster Ordnung.- 2.2. Nichtlineare partielle Gleichungen erster Ordnung.- 2.3. Der Satz von Frobenius.- 3. Strukturstabilität.- 3.1. Der Begriff der Strukturstabilität.- 3.2. Differentialgleichungen auf dem Torus.- 3.3. Die analytische Reduktion analytischer Diffeomorphismen der Kreislinie auf Drehungen.- 3.4. Einführung in die hyperbolische Theorie.- 3.5. Anosov-Systeme.- 3.6. Strukturstabile Systeme sind nicht überall dicht.- 4. Störungstheorie.- 4.1. Die Mittelungsmethode.- 4.2. Mittelbildung in monofrequenten Systemen.- 4.3. Mittelbildung in multifrequenten Systemen.- 4.4. Die Mittelbildung in Hamiltonschen Systemen.- 4.5. Adiabatische Invarianten.- 4.6. Mittelbildung in Seifert-Blätterungen.- 5. Normalformen.- 5.1. Formale Reduktion auf eine lineare Normalform.- 5.2. Der Resonanzfall.- 5.3. Poincarésche und Siegelsehe Gebiete.- 5.4. Die Normalform einer Abbildung in einer Umgebung eines Fixpunktes.- 5.5. Die Normalform einer Gleichung mit periodischen Koeffizienten.- 5.6. Die Normalform einer Umgebung einer elliptischen Kurve.- 5.7. Beweis des Satzes von Siegel.- 6. Lokale Bifurkationstheorie.- 6.1. Familien und Deformationen.-6.2. Von Parametern abhängende Matrizen und Singularitäten der Dekrementdia¬gramme.- 6.3. Die Bifurkationen der singulären Punkte eines Vektorfeldes.- 6.4. Verselle Deformationen der Phasenbilder.- 6.5. Der Stabilitätsverlust von Gleichgewichtslagen.- 6.6. Der Stabilitätsverlust von Selbstschwingungen.- 6.7. Verselle Deformationen äquivarianter Vektorfelder auf der Ebene.- 6.8. Die Änderung der Topologie bei Resonanzen.- 6.9. Die Klassifizierung der singulären Punkte.- Beispiele für Prüfungsaufgaben.- Literatur.- Namen- und Sachverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.