Arnol'd | Dynamical Systems III | E-Book | sack.de
E-Book

E-Book, Englisch, Band 3, 294 Seiten, eBook

Reihe: Encyclopaedia of Mathematical Sciences

Arnol'd Dynamical Systems III


Erscheinungsjahr 2013
ISBN: 978-3-662-02535-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 3, 294 Seiten, eBook

Reihe: Encyclopaedia of Mathematical Sciences

ISBN: 978-3-662-02535-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This work describes the fundamental principles, problems, and methods of elassical mechanics focussing on its mathematical aspects. The authors have striven to give an exposition stressing the working apparatus of elassical mechanics, rather than its physical foundations or applications. This appara tus is basically contained in Chapters 1, 3,4 and 5. Chapter 1 is devoted to the fundamental mathematical models which are usually employed to describe the motion of real mechanical systems. Special consideration is given to the study of motion under constraints, and also to problems concerned with the realization of constraints in dynamics. Chapter 3 is concerned with the symmetry groups of mechanical systems and the corresponding conservation laws. Also discussed are various aspects of the theory of the reduction of order for systems with symmetry, often used in applications. Chapter 4 contains abrief survey of various approaches to the problem of the integrability of the equations of motion, and discusses some of the most general and effective methods of integrating these equations. Various elassical examples of integrated problems are outlined. The material pre sen ted in this chapter is used in Chapter 5, which is devoted to one of the most fruitful branches of mechanics - perturbation theory. The main task of perturbation theory is the investigation of problems of mechanics which are" elose" to exact1y integrable problems.

Arnol'd Dynamical Systems III jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Basic Principles of Classical Mechanics.- 2. The n-Body Problem.- 3. Symmetry Groups and Reduction (Lowering the Order).- 4. Integrable Systems and Integration Methods.- 5. Perturbation Theory for Integrable Systems.- 6. Nonintegrable Systems.- 7. Theory of Small Oscillations.- Comments on the Bibliography.- Recommended Reading.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.