Buch, Englisch, 170 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 426 g
Buch, Englisch, 170 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 426 g
ISBN: 978-1-032-50473-5
Verlag: Chapman and Hall/CRC
Deep Learning for Engineers introduces the fundamental principles of deep learning along with an explanation of the basic elements required for understanding and applying deep learning models.
As a comprehensive guideline for applying deep learning models in practical settings, this book features an easy-to-understand coding structure using Python and PyTorch with an in-depth explanation of four typical deep learning case studies on image classification, object detection, semantic segmentation, and image captioning. The fundamentals of convolutional neural network (CNN) and recurrent neural network (RNN) architectures and their practical implementations in science and engineering are also discussed.
This book includes exercise problems for all case studies focusing on various fine-tuning approaches in deep learning. Science and engineering students at both undergraduate and graduate levels, academic researchers, and industry professionals will find the contents useful.
Zielgruppe
Academic, Postgraduate, and Undergraduate Advanced
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Technik Allgemein Technik: Allgemeines
Weitere Infos & Material
1. Introduction. 2. Basics of Deep Learning. 3. Computer Vision Fundamentals. 4. Natural Language Processing Fundamentals 5. Deep Learning Framework: Pytorch and Cuda Installations. 6. Case Study I: Image Classifications 7. Case Study II: Object Identification 8. Case Study III: Semantic Segmentation 9. Case Study IV: Image Captioning