Arabia | Introduction to Isospectrality | Buch | 978-3-031-17122-2 | sack.de

Buch, Englisch, 238 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 434 g

Reihe: Universitext

Arabia

Introduction to Isospectrality

Buch, Englisch, 238 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 434 g

Reihe: Universitext

ISBN: 978-3-031-17122-2
Verlag: Springer International Publishing


"Can one hear the shape of a drum?" This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students.
Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon–Webb–Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada–Bérard–Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon–Webb–Wolpert domains from Buser surfaces and establishes their isospectrality.
Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.
Arabia Introduction to Isospectrality jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 2 The Wave Equation on Flat Manifolds.- 3 The Sunada–Bérard–Buser Method.- 4 The Gordon–Webb–Wolpert Isospectral Domains.- A Linear Representations of Finite Groups and Almost-Conjugate Subgroups.- B The Laplacian as Isometry-Invariant Differential Operator.- C The Path-Distance on a Hausdorff Connected Flat Manifold.- D Group Quotients of Flat Manifolds.- References.- Glossary.- Index.


Alberto Arabia is a specialist in cohomological theories, especially Equivariant Cohomology and p-adic Cohomology. His publications in Equivariant Cohomology include the book Equivariant Poincaré Duality on G-Manifolds (Lecture Notes in Mathematics 2288, Springer 2021), while in p-adic Cohomology he succeeded with Zoghman Mebkhout in the globalization of the Monsky–Washnitzer cohomology (2010). He has also conducted important research in the field of Configuration Spaces (Mémoires de la SMF 170, 2021).


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.