Buch, Englisch, Band 109, 312 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 653 g
A Meeting of Minds
Buch, Englisch, Band 109, 312 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 653 g
Reihe: Fundamental Theories of Physics
ISBN: 978-0-7923-6115-2
Verlag: Springer Netherlands
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften Ökologie
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
- Naturwissenschaften Physik Quantenphysik Teilchenphysik
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Section I. Pedagogy.- Generalizations of Finsler Geometry.- Finsler Geometry Inspired.- Finsler Geometry.- Section II. Summary and Overview.- Summary and Overview.- Section III. Meeting of Minds.- Some Remarks On the Conformal Equivalence of Complex Finsler Structures.- Deformations of Finsler Metrics.- The Constant Sprays of Classical Ecology and Noisy Finsler Perturbations.- On the Geometry of a Homogeneous Contact Transformation.- On Finsler Spaces of Douglas Type III.- Equations of Motion from Finsler Geometric Methods.- On the Theory of Finsler Submanifolds.- Finslerian Fields.- On the Inverse Problem of the Calculus of Variations for Systems of Second-Order Ordinary Differential Equations.- Complex Finsler Geometry Via the Equivalence Problem on the Tangent Bundle.- Lévy Concentration of Metric Measure Manifolds.- Hypersurfaces in Generalised Lagrange Spaces.- The Notion of Higher Order Finsler Space. Theory and Applications.- Generalized Complex Lagrange Spaces.- Gravity in Finsler Spaces.- Higher Order Ecological Metrics.- Area and Metrical Connections in Finsler Space.- Problem.- Finslerian Convexity and Optimization.- On Projective Transformations and Conformal Transformations of the Tangent Bundles of Riemannian Manifolds.